摘要
推广了拉回吸引子的定义,提出了半一致紧的D拉回吸引子与半一致吸引的D拉回吸引子的概念且建立相应的抽象结果.这两个理论结果被应用于定义在无界整数集上的非自治p-Laplacian格点系统.证明了该系统在能量空间l^(2)中分别具有一个唯一的半一致紧的D拉回吸引子与一个唯一的半一致吸引的D拉回吸引子.此外,还研究了这些吸引子之间的结构与关系.
In this paper, the definition of pullback attractors has been generalized, the concepts of semi-uniformly compact D-pullback attractors and semi-uniformly attracting D-pullback attractors been introduced, and corresponding abstract results been established. The two abstract results have been applied to a non-autonomous p-Laplacian lattice system defined on the integer set. It shows that the system has a unique semi-uniformly compact D-pullback attractor and a unique semi-uniformly attracting D-pullback attractor in the energy space l^(2). In addition, the relationship and structure of those attractors have also been investigated. The main difficulties is to overcome the non-compactness of embeddings in infinite lattice systems and the nonlinearity of the discrete p-Laplace operator for p>2.
作者
李琳
杨袁
舒级
LI Lin;YANG Yuan;SHU Ji(Department of Primary Education, North Sichuan Preschool Educators College, Guangyuan Sichuan 628017, China;Department of Mathematical Foundations, Sichuan Tourism University, Chengdu 610100, China;School of Mathematical Science and V.C. and V.R. Key Lab, Sichuan Normal University, Chengdu 610068, China)
出处
《西南师范大学学报(自然科学版)》
CAS
2021年第9期1-9,共9页
Journal of Southwest China Normal University(Natural Science Edition)
基金
四川省教育厅自然科学一般项目(17ZB0182)
国家自然科学基金项目(11871138)
四川旅游学院科研创新团队项目(20SCTUTY01).