期刊文献+

基于肌肉细胞水凝胶纤维的光固化生物打印系统设计

Design of Photocurable Bio-printing System Based on Muscle Cell Hydrogel Fiber
下载PDF
导出
摘要 肌肉纤维是生物致动器的重要动力来源,但目前仍缺少合适的设备制备肌肉细胞纤维。生物打印因其高精度、生物兼容性好的特点被广泛应用于构造生物细胞组织。该文设计开发了一种基于光固化的生物打印系统,打印了载有C2C12肌肉细胞的GelMA水凝胶纤维,分析了不同紫外光强和水凝胶流量下的可打印范围、纤维平均线宽和均匀性。实验结果表明,在光强为20 mW/cm^(2)和流量为120μL/min时,纤维的效果最佳,同时细胞的存活率很高。该研究对生物致动器的研究具有重要意义。 Muscle fibers are an important power source of biological actuators,but there is still a lack of suitable equipment to prepare muscle cell fibers.Bioprinting has been widely used in the construction of biological cells and tissues due to its high precision and good biocompatibility.In this paper,a photocurable bio-printing system was designed and developed.GelMA hydrogel fibers loaded with C2C12 muscle cells were printed.The printable range,fiber average line width and uniformity were analyzed under different ultraviolet light intensity and hydrogel flow.The experimental results showed that the optimum fiber efficiency and cell survival rate were obtained when the light intensity was 20 mW/cm^(2) and the flow rate was 120μL/min.This study is of great significance to the study of biological actuators.
作者 胥国勇 赵钢 陆志威 关冠 XU Guo-yong;ZHAO Gang;LU Zhi-wei;GUAN Guan(Department of Precision Machinery and Precision Instruments,University of Science and Technology of China,Hefei 230026,China)
出处 《自动化与仪表》 2021年第9期69-73,102,共6页 Automation & Instrumentation
关键词 水凝胶 纤维 生物打印 生物致动器 光固化 肌肉细胞 hydrogel fiber bio-printing biological actuators photocuring muscle cells
  • 相关文献

参考文献3

二级参考文献53

  • 1吴平.3D打印技术及其未来发展趋势[J].印刷质量与标准化,2014(1):8-10. 被引量:41
  • 2Salem SA, Hwei NM, Bin SA, et al. Polylactic-co-glycolic acid mesh coated with fibrin or collagen and biological adhe- sive substance as a prefabricated, degradable, biocompatible, and functional scaffold for regeneration of the urinary bladder wall[J]. Jourual of Biomedical Materials Research Part A, 2013, 101A: 2237-2247.
  • 3Hoffman AS. Hydrogels for biomedical applications [ J ]. Ad- vanced Drug Delivery Reviews, 2012, 64(S) : 18-23.
  • 4Mani P, Mano JF. Stimuli-Responsive Hydrogels Based on Polysaccharides Incorporated with Thermo-Responsive Poly- mers as Novel Biomaterials [ J ]. Macromo|ecular Bioscience, 2006, 6(12) : 991 -1008.
  • 5Jin SK, So MY, Doo YK, et al. Injectable in situ-forming hydrogel for cartilage tissue engineering[J]. Journal of Mate- rials Chemistry B, 2013,1 (26) : 3314-3321.
  • 6Kopecek J,Yang JY. Hydrogels as smart biomaterials [ J 1. Polymer International, 2007, 56(9): 1078-1098.
  • 7Kopecek J, Yang JY. Smart self-assembled hybrid hydrogel bio- materials [ J ]. Angewandte Chemie International Edition, 2012, 51(30) : 7396-7417.
  • 8Samchenko Y, Ulberg Z, Korotych O. Multipurpose smart hy- drogel systems[J]. Advances in Colloid and Interface Science, 2011, 168(1) : 247-262.
  • 9Pizzorusso G, Fratini E, Eiblmeier J, et al. Physicochemical characterization of acrylamide/bisacrylamide hydrogels and their application for the conservation of easel paintings [ J 1. Langmuir, 2012, 28 (8) : 3952-3961.
  • 10Schillemans JP, Hennink WE, Nostrum CF. The effect of net- work charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels [ J]. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76 (3) : 329- 335.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部