期刊文献+

基于健康画像的光通信设备故障预测算法 被引量:3

Fault prediction algorithm of optical communication equipment based on health profiles
下载PDF
导出
摘要 针对光通信网设备风险预警无法进行人工分析的问题,提出基于用户画像技术与深度学习算法的设备故障预测算法。基于数据采集与数据增强构建设备健康画像,从含有脏数据且格式不统一的原始数据中抽取与设备故障相关联的标签序列,将序列数据“喂”入深度学习模型,获得高准确度的故障预测结果。仿真结果表明:该算法能够基于设备原始数据构建设备健康画像并实时训练深度学习模型,获得接近100%的设备故障预测准确率;与全标签序列的算法和未进行数据增强的算法相比,所提算法将故障预测准确率分别提升了7.8%和3.3%。 Aiming at the problem that the risk warning of optical communication network equipment cannot be analyzed manually,a failure prediction algorithm of equipment based on user profile and deep learning algorithm is proposed.Based on data collection and data enhancement,the device health profile is constructed,and the label sequence associated with the equipment failure is extracted from the original data containing dirty data and inconsistent format,and the sequence data is fed into the deep learning model to obtain highly accurate failure prediction results.The simulation results show that this algorithm can construct the equipment health profile based on the original equipment data and train the deep learning model in real time,and obtain the accuracy rate of equipment failure prediction close to 100%.Compared with the algorithm of full label sequence and the algorithm without data enhancement,the proposed algorithm improves the accuracy rate of failure prediction by 7.8%and 3.3%.
作者 王峰 李兴华 李晓龙 刘瑞增 庄浩涛 赵永利 WANG Feng;LI Xinghua;LI Xiaolong;LIU Ruizeng;ZHUANG Haotao;ZHAO Yongli(Electric Power Research Institute,State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan 750001,China;Shizuishan Power Supply Company,State Grid Ningxia Electric Power Co.,Ltd.,Shizuishan Ningxia 753099,China;Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《光通信技术》 2021年第9期31-35,共5页 Optical Communication Technology
基金 2020年度第二批宁夏自然科学基金项目(2020AAC03487)资助 国网宁夏电力有限公司2020年研究开发项目计划(第一批)(5229DK19004W)资助。
关键词 故障预测 健康画像 光通信设备 深度学习 failure prediction health profiles optical communication equipment deep learning
  • 相关文献

同被引文献44

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部