期刊文献+

Bi_(5)O_(7)I/g-C_(3)N_(4)Z型异质结的常温沉淀制备及其光催化性能研究 被引量:8

Room-temperature precipitation synthesis and photocatalysis of Bi_(5)O_(7)/g-C_(3)N_(4) Z-scheme heterojunction
下载PDF
导出
摘要 以Bi(NO3)3·5H2O、KI和g-C_(3)N_(4)为前驱体,采用常温沉淀法制备Bi_(5)O_(7)I/g-C_(3)N_(4)Z型异质结复合光催化剂,表征其光吸收性能、微观形貌、光生电子-空穴的分离效率等特性,研究新型光催化剂对RhB的可见光催化降解性能,探讨其可见光催化过程活性基团种类以及作用机理.结果表明:利用沉淀法合成Bi_(5)O_(7)I/g-C_(3)N_(4)的条件为:Bi(NO_(3))_(3)·5H_(2)O、KI和g-C_(3)N_(4)的投加量分别为4.85g、1.66g和1.61g,乙二醇的用量为50mL,反应液的pH值为12,反应搅拌速度为200r/min,反应温度为25℃.Bi_(5)O_(7)I/g-C_(3)N_(4)异质结无杂相生成且纯度高,异质结复合发生在g-C_(3)N_(4)的(002)晶面和Bi_(5)O_(7)I的(203)晶面,但g-C_(3)N_(4)和Bi_(5)O_(7)I的化学结构未受影响.Bi_(5)O_(7)I/g-C_(3)N_(4)呈三维纳米花瓣形貌结构,为光生电子-空穴的迁移提供了大量的接触位点.Bi_(5)O_(7)I的g-C_(3)N_(4)掺杂改性使其光催化活性显著增强,其光吸收边缘由425nm红移至462nm,Bi_(5)O_(7)I/g-C_(3)N_(4)的能带排列结构与Z型异质结匹配,促进了光生电子-空穴的分离.其光电流密度(11.5mA/cm)约为g-C_(3)N_(4)和Bi_(5)O_(7)I对应值的2.66倍和1.47倍.Bi_(5)O_(7)I/g-C_(3)N_(4)对罗丹明B的可见光催化降解率为93.9%,显著高于g-C_(3)N_(4)(58%)和Bi_(5)O_(7)I(49.7%)的降解效果,其光催化氧化活性主要来自羟基基团、超氧基团和光生空穴等中间态自由基. In this work,by using Bi_(5)O_(7)I、KI and g-C_(3)N_(4) as precursors,a novel Bi_(5)O_(7)I/g-C_(3)N_(4) Z-scheme heterojunction has been synthesized successfully by precipitation method at room temperature,its property of light absorption、morphologic structure、efficiency of photogenerated electron-hole were characterized.The visible-light degradation performance on Rhodamine B(RhB)by new type composite photocatalyst、the kinds of radicals and the mechanism in photocatalytic reaction system were studied.The results revealed that:The synthesis conditions of Bi_(5)O_(7)I/g-C_(3)N_(4) by precipitation were shown as follow:4.85g Bi(NO_(3))_(3)·5H_(2)O,1.66g KI,1.61g g-C_(3)N_(4),50mL glycol,12 of reaction pH,200r/min of reaction stirring rate and ambient reaction temperature(25℃).There’s no impurity and influence on chemical structure of g-C_(3)N_(4) and Bi_(5)O_(7)I during the synthesis process,the recombination of Bi_(5)O_(7)I/g-C_(3)N_(4) crystallographic plane occured on the {002} crystal plane of g-C_(3)N_(4) and the{312}crystal plane of Bi_(5)O_(7) I.The morphologic structure of Bi_(5)O_(7)I/g-C_(3)N_(4) was 3D nano petal-like,which furnished a large number of contacting site for the transfer of photogenerated electron-hole.The doping of g-C_(3)N_(4) on Bi_(5)O_(7)I can significantly enhance photocatalytic activity,its wavelength edge of light absorption shifted to 462nm from 425nm.The band arrangement structure of Bi_(5)O_(7)I/g-C_(3)N_(4) was matched with the Z-scheme heterojunction,which promoted the separation of photogenerated electron-hole,its photocurrent density(11.5mA/cm)is 2.66 and 1.47times than that of g-C_(3)N_(4)(4.32mA/cm)and Bi_(5)O_(7)I(7.8mA/cm)respectively.The photocatalytic degradation rate for RhB by Bi_(5)O_(7)I/g-C_(3)N_(4) under visble light irradiation is 93.9%,which is 1.89 and 1.62times than that of Bi_(5)O_(7)I and g-C_(3)N_(4) respectively,the activity of photocatalytic oxidation was attributed to the intermediate radicals including·OH、·O_(2)^(-) and h^(+).
作者 李冬梅 卢文聪 梁奕聪 王逸之 陈海强 李俊添 谢震宇 LI Dong-mei;LU Wen-cong;LIANG Yi-cong;WANG Yi-zhi;CHEN Hai-qiang;LI Jun-tian;XIE Zhen-yu(Faculty of Civil and Transportation Engineering,Guangdong University of Technology,Guangzhou 510006,China;Department of Brain and Cognitive Science,Massachusetts Institute of Technology,MA 02139,USA;Department of Physics,Fudan University,Shanghai 200433,China)
出处 《中国环境科学》 EI CAS CSCD 北大核心 2021年第9期4120-4126,共7页 China Environmental Science
基金 国家自然科学基金(51378129,51108094) 广东省自然科学基金(2017A030313321,2015AS030313494) 广东省高教厅-普通高校特色创新类项目(2016KTSCX035)。
关键词 常温沉淀法 Bi_(5)O_(7)I/g-C_(3)N_(4) Z型异质结 可见光催化性能 precipitation method at room temperature Bi_(5)O_(7)I/g-C_(3)N_(4) Z-scheme heterojunction visible-light photocatalytic property
  • 相关文献

参考文献2

二级参考文献43

  • 1Tong H, Ouyang S X, Bi Y P, et al. Nano-photocatalytic materials: possibilities and challenges.Adv Mater, 2012, 24: 229 doi:10.1002/adma.201102752.
  • 2White J L, Baruch M F, Pander J EⅢ, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes.Chem Rev, 2015, 115: 12888 doi:10.1021/acs.chemrev.5b00370.
  • 3Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials.Chem Rev, 2014, 114: 9919 doi:10.1021/cr5001892.
  • 4Subash B, Krishnakumar B, Swaminathan M, et al. Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag-ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism.Langmuir, 2013, 29: 939 doi:10.1021/la303842c.
  • 5Xue C, Wang T, Yang G D, et al. A facile strategy for the synthesis of hierarchical TiO2/CdS hollow sphere heterostructures with excellent visible light activity.J Mater Chem A, 2014, 2: 7674 doi:10.1039/c4ta01190b.
  • 6Ge M, Li Y F, Zhou Z, et al. Bi2O3-Bi2WO6 composite microspheres: hydrothermal synthesis and photocatalytic performances. J Phys Chem C, 2011, 115: 5220 doi:10.1021/jp108414e.
  • 7Chen Y J, Tian G H, Shi Y H, et al. Hierarchical MoS2/Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity.Appl Catal B: Envir, 2015, 164: 40 doi:10.1016/j.apcatb.2014.08.036.
  • 8Kim T W, Choi K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343: 990 doi:10.1126/science.1246913.
  • 9Chen L, Huang R, Xiong M, et al. Room-temperature synthesis of flower-like BiOX (X=Cl, Br, I) hierarchical structures and their visible-light photocatalytic activity.Inorg Chem, 2013, 52: 11118 doi:10.1021/ic401349j.
  • 10Zhou L, Wang W Z, Xu H L, et al. Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis.Chem Eur J, 2009, 15: 1776 doi:10.1002/chem.v15:7.

共引文献22

同被引文献76

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部