期刊文献+

融合栅格地图模型的改进AGV路径规划算法研究 被引量:2

Research on Improved AGV Path Planning Algorithm Based on Grid Map Model
下载PDF
导出
摘要 在传统自动引导小车(automated guided vehicle,AGV)路径规划研究方法中,针对环境模型多为正方形栅格导致模拟效果差的问题,提出了一种基于蜂巢栅格形状的地图模型,并针对传统蚁群算法求解路径规划问题时效率低下且结果不稳定的缺点,提出了一种基于改进型蚁群算法的AGV路径规划方法。首先,利用蜂巢栅格对环境进行建模,再使用改进型蚁群算法,根据每只蚂蚁和每次迭代的评估,使用不同的信息素更新规则来得到最终路径。实验结果表明,改进型蚁群算法解决了传统蚁群算法不能较好收敛的问题,并能获得更短的规划路径。再和相关文献算法的结果进行对比,发现使用改进型蚁群算法能在算法前期获得更好的路径采集效果,在算法后期能获得更好的收敛效果,提高了路径搜索的准确性和稳定性。 In the traditional research methods of automated guided vehicle(AGV)path planning,aiming at the problem that the environment model is mostly square grid,which leads to poor simulation effect,a map model based on the shape of honeycomb grid is proposed.Aiming at the shortcomings of low efficiency and unstable results of traditional ant colony algorithm,an AGV path planning method based on improved ant colony algorithm is proposed.Firstly,the environment is modeled by using the honeycomb grid,and then the improved ant colony algorithm is used to obtain the final path according to the evaluation of each ant and each iteration.The experiment shows that the improved ant colony algorithm can solve the problem that the traditional ant colony algorithm can not converge well,and can obtain shorter planning path.Compared with the results of related literature algorithms,it is found that the improved ant colony algorithm can obtain better path acquisition effect in the early stage of the algorithm,and better convergence effect in the later stage of the algorithm,so as to improve the accuracy and stability of path search.
作者 顾文斌 陈泽宇 吴亚伟 苑明海 GU Wen-bin;CHEN Ze-yu;WU Ya-wei;YUAN Ming-hai(School of Mechanical and Electrical Engineering,Hohai University,Changzhou 213022,China;Changzhou Vocational Institute of Engineering,Changzhou 213022,China)
出处 《计算机技术与发展》 2021年第9期1-6,共6页 Computer Technology and Development
基金 国家自然科学基金资助项目(51875171) 中央高校基本科研业务费资助项目(2019B21614,B200204036)。
关键词 自动引导小车 路径规划 蚁群算法 蜂巢栅格模型 信息素更新 automated guided vehicle path planning ant colony algorithm honeycomb-grid-model pheromones updating
  • 相关文献

参考文献12

二级参考文献74

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2张美玉,黄翰,郝志峰,杨晓伟.基于蚁群算法的机器人路径规划[J].计算机工程与应用,2005,41(25):34-37. 被引量:46
  • 3朱庆保.复杂环境下的机器人路径规划蚂蚁算法[J].自动化学报,2006,32(4):586-593. 被引量:46
  • 4王景存,张晓彤,陈彬,陈和平.一种基于Dijkstra算法的启发式最优路径搜索算法[J].北京科技大学学报,2007,29(3):346-350. 被引量:27
  • 5潘峥嵘,杜宝强,王树东,徐猛.基于CPLD的彩色视觉移动机器人路径跟踪系统[J].计算机工程与设计,2007,28(5):1102-1103. 被引量:3
  • 6Dorigo M,Gambardella L M,Middendorf M,et al. Guest editorial: special section on ant colony optimization[A]. IEEE Transactions on Evolutionary Computation[C]. 2002,6(4): 317-319.
  • 7Dorigo M,Dicaro G. Ant colony optimization: a new meta-heuristic[A]. Proceedings of the 1999 Congress on Evolutionary Computation[C]. Washington,DC,USA: 1999,Vol.2. 1477. 474-477.
  • 8Wang C M,Soh Y C,Wang H,et al. A hierarchical genetic algorithm for path planning in a static environment with obstacles[A]. IEEE CCECE Canadian Conference on Electrical and Computer Engineering[C]. 2002,vol.3.1652-1657.
  • 9D'Amico A,Ippoliti G,Longhi S A. Radial basis function networks approach for the tracking problem of mobile robots[A]. Proceedings of the IEEE/ASME. International Conference on Advanced Intelligent Mechatronics[C]. 2001,vol.1. 498-503.
  • 10Weerayuth N,Chaiyaratana N.Closed-loop time-optimal path planning using a multi-objective diversity control oriented genetic algorithm[A]. Systems,Man and Cybernetics[C]. IEEE International Conference on,Vol.6:7.

共引文献417

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部