期刊文献+

基于KNN算法的仪表实时监控边缘平台 被引量:1

下载PDF
导出
摘要 为了对旧式仪表进行改造、升级,实现数字化、智能化的实时监控,文章提供了一种基于KNN算法的仪表实时监控边缘平台。首先,我们对其整体架构进行设计,使用树莓派模块实现图像采集、图像传输边缘计算功能,在云端服务器使用OpenCV集成的算法对图像进行预处理:灰度化、降噪、旋转、边缘线条提取、滤波、二值化处理。接着,采用KNN算法进行数字的智能识别,并将结果反馈到客户终端中。结果表明,可以智能化的对仪表盘数值进行实时的监控、统计、报警等功能,满足了仪表盘数字化、智能化的管理需求。 In order to transform and upgrade the old instrument and realize digital and intelligent real-time monitoring,this paper provides a real-time monitoring edge platform based on KNN algorithm.First of all,the overall architecture is designed,and the Raspberry Pi module is used to achieve the functions of image acquisition and edge calculation of image transmission.In the cloud server,the integrated algorithm of OpenCV is used to preprocess the image:graying,noise reduction,rotation,edge line extraction,filtering,and binarization processing.Then,the KNN algorithm is used to intelligently identify the numbers,and the results are fed back to the customer terminal.The results show that it can intelligently monitor,count and alarm the values of the dashboard in real time,which meets the needs of digital and intelligent management of the dashboard.
出处 《科技创新与应用》 2021年第26期27-30,共4页 Technology Innovation and Application
基金 黑龙江省自然科学基金资助项目(编号:QC2018081) 黑龙江省大学生创新训练计划项目(编号:202010214025)。
关键词 仪表盘数字识别 KNN OPENCV 树莓派 digital recognition of the dashboard KNN OpenCV Raspberry Pi
  • 相关文献

参考文献4

二级参考文献44

  • 1赵春霞,钱乐祥.遥感影像监督分类与非监督分类的比较[J].河南大学学报(自然科学版),2004,34(3):90-93. 被引量:88
  • 2杜世宏,秦其明,王桥.空间关系及其应用[J].地学前缘,2006,13(3):69-80. 被引量:24
  • 3杨丽华,戴齐,郭艳军.KNN文本分类算法研究[J].微计算机信息,2006,22(07X):269-270. 被引量:24
  • 4王清,马华,孙静,韩忠东.改进的KNN算法及其在医学图像处理中的应用[J].泰山医学院学报,2006,27(6):564-566. 被引量:5
  • 5孙即祥.图像处理[M].北京:科学出版社,2010.
  • 6UNSER M. Texture Classification and Segmentation Using Wavelet Frames [J]. IEEE Trans. On Image Processing, 1995,11(4).-1 549-1 560.
  • 7MAO J,ANIL K. JAIN. Artificial Neural Networks for Feature Extraction andMultivariate Data Projection [J]. IEEE Trans. on Neural Networks,1999(6):296- 317.
  • 8FENG H Y,PAVLIDIS T. Decomposition of Polygons Into Simpler Components:Feature Extraction for Syntactic Pat tern Recognition [J]. IEEE Transaction on Computers, 1975,24:636 -650.
  • 9CLAUSIDA, ZHAO Yong-ping. Grey Level Co-Occurrence Integrated Algorithm (GLC IA) :A Superior Computational Meth- od to Determine Co-Occurrence Probability Texture Features [J]. Computers & Geosciences, 2003,29 (7) : 837 - 850.
  • 10HARALICK R M, SHANMUGAN K, DINSTEIN I. Texture Features for Image Classification [J]. IEEE Trans. on Systems, Man and Cybernetics, 1973,3 (6) : 610 - 621.

共引文献287

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部