期刊文献+

基于机器学习的文本分类研究 被引量:4

下载PDF
导出
摘要 随着时光的流逝,科技已经得到了快速的发展。机器学习和数据挖掘技术在不知不觉中已经发展到了相对成熟的地步,在日常生活中被广泛应用。随着互联网技术的不断完善,人们对网络的依赖程度越来越高,文本信息以各种各样的形式在网络中传递,文本的分类研究也已经涉及日常生活中的各个领域,包括平时所见的用户评论挖掘、网页分类、微博情感分析、Web文档自动分类、数字图书馆、自动文摘、单词语义辨析等有关操作。 With the passage of time, science and technology has developed rapidly. Machine learning and data mining technology have developed to a relatively mature stage unconsciously, and are widely used in daily life. With the continuous improvement of Internet technology, people are more and more dependent on the network. Text information is transmitted in various forms in the network. Text classification research has also been used in various fields of daily life, including user review mining, web page classification, micro blog sentiment analysis, Web document automatic classification, digital library,automatic abstract, semantic analysis of words, and other related operations.
作者 王迷莉
机构地区 山东科技大学
出处 《科技创新与应用》 2021年第26期70-72,共3页 Technology Innovation and Application
关键词 朴素贝叶斯 PYTHON 新闻 Naive Bayesian Model python news
  • 相关文献

参考文献2

二级参考文献49

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2FAYYAD U, PIATETSKY-SHAPIRO G, SMYTH P. Knowledge dis- covery and data mining: towards a unifying framework [ C ]//Proc of the 2nd lntenlational Conference on Knowledge Discovery & Data Mining. 1996:82-88.
  • 3PEARL J. Fusion, propagation, and structuring in belief networks [ J ]. Artificial intelligence, 1986,29 ( 3 ) :241 - 288.
  • 4LAURITZEN S L, SPIEGELHALTER D J. Local computations with probabilities on graphical struetures and their application to expert systems [ J ]. Journal of the Royal Statistical Society Series B, 1988,50( 1570 ) : 157-224.
  • 5BROOM B M, DO K A, SUBRAMANIAN D. Model averaging strate- gies for structure learning in Bayesian networks with limited data[ J ]. BMC Bioinformatics,2012,13( S13 ) :10.
  • 6HUANG Shuai, LI Jing, YE Jie-ping, et al. A sparse structure learn- ing algorithm for Ganssian Bayesian network identification from high- dimensional data[ J]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence,2013,35 (6) : 1328-1342.
  • 7CHICKERING D M, GEIGER D, HECKERMAN D. Learning Baye- sian networks is NP-hard, Technical Report MSR-TR- 94- 17 [ R ]. 1994.
  • 8ROBINSON R W. Counting unlabeled acyclic digraphs[ C]//Combi- natorial Mathematics V. Berlin:Springer, 1977:28-43.
  • 9SPIRTES P, GLYMOUR C, SCHEINES R. Causality from probabili- ty[ R]. 1989.
  • 10SPIRTES P, GLYMOUR C. An algorithm for fast recovery of sparse causal graphs [ J ]. Social Science Computer Review, 1991,9 ( 1 ) : 62-?2.

共引文献93

同被引文献28

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部