期刊文献+

一种最优选择的压缩采样匹配追踪算法 被引量:1

An Optimal Selection Compressed Sampling Matching Pursuit Algorithm
下载PDF
导出
摘要 为了解决压缩采样匹配追踪(CoSaMP)算法在观测值固定时重构概率随着稀疏度的增加急剧下降问题,基于最优选择思想和回溯思想设计一种最优选择的压缩采样匹配追踪(OSCoSaMP)算法。在每次迭代过程中,从支撑集中选出最优的支撑,同时采用回溯思想剔除错误原子,分别测试不同稀疏度和不同观测值下的重构概率。仿真结果表明,该算法重构概率与OMP和CoSaMP算法相比有所提升。OSCoSaMP算法在稀疏度50时的重构概率保持在90%以上,当观测值大于70时重构概率在90%以上。OSCoSaMP算法能够有效提高一维信号的重构概率。 In order to solve the problem of compressed sampling matching pursuit(CoSaMP)algorithm when the observation value is fixed,the reconstruction probability decreases sharply with the increase of sparsity.Based on the optimal choice and backtracking ideas,an optimally selected compressed sampling matching tracking(OSCoSaMP)algorithm is designed.In each iteration,the optimal support is selected from the support set,and the backtracking idea is used to eliminate errors.Atom,tested the reconstruction probability under different sparsity and different observation values.The simulation results show that the reconstruction probability of the algorithm is improved compared with the OMP and CoSaMP algorithms.The reconstruction probability of the OSCoSaMP algorithm remains above 90%when the sparsity is 50,and the reconstruction probability is 90%when the observed value is greater than 70.The OSCoSaMP algorithm can effectively improve the reconstruction probability of one-dimensional signals.
作者 刘强 司伟建 LIU Qiang;SI Wei-jian(College of Information and Communication Engineering,Harbin Engineering University;Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin 150001,China)
出处 《软件导刊》 2021年第9期78-82,共5页 Software Guide
基金 国家自然科学基金项目(61671168,61801143) 中央高校基本科研业务费专项基金项目(3072019CF0801) 黑龙江省自然科学基金项目(LH2020F019) 航空科学基金项目(2019010P6001)。
关键词 压缩感知 重构算法 贪婪匹配追踪 正交匹配追踪 压缩采样匹配追踪 compressed sensing reconstruction algorithm greedy matching pursuit orthogonal matching pursuit compressed sampling matching pursuit
  • 相关文献

参考文献12

二级参考文献90

  • 1张宏杰,宋枭禹,包尚联,俎栋林.磁共振成像射频线圈技术[J].中国医学影像技术,2005,21(9):1440-1441. 被引量:23
  • 2徐忠强,朱秀昌.超分辨率图像重建方法研究[J].自动化仪表,2006,27(11):1-4. 被引量:8
  • 3禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 4DONOHO D L. Compressed sensing [ J]. IEEE Transactions on In- formation Theory, 2006, 52(4): 1289- 1306.
  • 5DONOHO D L. Extensions of compressed sensing [ J]. Signal Pro- eessing, 2006, 86(3): 533-548.
  • 6CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete froquency informa- tion [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489 - 509.
  • 7CANDleS E, TAO T. Near-optimal signal recovery from random pro- jections: universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2006, 52( 12): 5406-5425.
  • 8CANDES E, ROMBERG J. Quantitative robust uncertainty princi- ples and optimally sparse decompositions [ J]. Foundations of Com- putational Mathematics, 2006, 6(2): 227-254.
  • 9CANDES E, ROMBERG J, TAO T. Stable signal recovery from in- complete and inaccurate measurements [ J]. Communications on Pure and Applied Mathematics, 2006, 59(8) : 1207 - 1223.
  • 10MALLAT S, ZHANG Z. Matching pursuit with time-frequency dic- tionaries [J]. IEEE Transactions on Signal Processing, 1993, 41 (12) : 3397 -3415.

共引文献36

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部