期刊文献+

一种基于聚类预填充的SVD算法 被引量:2

A SVD Algorithm Based on Clustering Prefilling
下载PDF
导出
摘要 在大多数推荐系统中,由于用户评分数据的稀疏性,使得相似度误差较大并影响推荐结果的准确性。为了解决用户评分数据的稀疏性问题,提出了一种基于聚类预填充的SVD算法,依据项目的特征和用户对项目的评分,生成用户项目—特征兴趣矩阵,使用用户项目—特征兴趣矩阵对用户进行聚类,将同类用户对项目的平均评分作为未评分项目的估计评分填充用户—项目评分矩阵,再使用SVD算法对未评分项目预测评分并产生推荐结果。通过实验证明,在选取不同最近邻数量的条件下,提出的基于聚类预填充的SVD算法相比传统算法,推荐精度和准确度有一定程度的提高。 In most recommendation systems,sparseness of user rating data causes a large deviation and affects recommendation results.In order to solve the problem,this paper proposes a cluster pre-filling SVD(Singular Value Decomposition)algorithm.The algorithm generates user-item preference matrix based on the characteristics of the items and the user’s rating,then clusters users,and fills the user-item rating matrix with the average score of similar users on the item,then uses the SVD algorithm to predict the score of unrated items and produce recommended results.It is experimentally proven that,compared with the traditional collaborative filtering recommendation algorithm and SVD algorithm,the cluster pre-filling SVD algorithm precision and accuracy have been improved to a certain degree.
作者 魏浩 张伟 郭新明 WEI Hao;ZHANG Wei;GUO Xinming(Department of Computer,Xianyang Normal College,Xianyang 712000,China)
出处 《微型电脑应用》 2021年第9期17-19,22,共4页 Microcomputer Applications
基金 陕西省重点研发计划项目(2020NY-175) 陕西省教育厅科学研究计划项目(18JK0838) 咸阳发展研究院基金项目(2018XFY018)。
关键词 协同过滤 聚类 稀疏性 预填充 奇异值分解算法 collaborative filtering cluster sparsity pre-filling SVD algorithm
  • 相关文献

参考文献12

二级参考文献82

  • 1Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C ]//Pro- ceedings of the 1994 ACM conference on computer supported cooperative work. [ s. 1. ] :ACM, 1994 : 175-186.
  • 2Sarwar B, Karypis G, Konstan J, et al. Item-based collabora- tive filtering recommendation algorithms [ C ]//Proceedings of the 10th international conference on World Wide Web. [ s. 1. ] :ACM,2001:285-295.
  • 3Adomavicius G, Tuzhilin A. Towards the next generation of recommender systems : a survey of the state- of - the - art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering,2005,17 (6) :734-749.
  • 4Billsus D, Pazzani M. Learning collaborative information filters [ C ]//Proceedings of the 15th international conference on ma- chine learning. [ s. 1. ] : [ s. n. ], 1998.
  • 5Zhou K. Combining item rating similarity and item classifica- tion similarity for better recommendation quality [ J ]. Ad- vanced Materials Research,2012,461:289-292.
  • 6Miller B N, Albert I, Lam S K, et al. MovieLens unplugged:ex- periences with occasionally connected recommender system [ C]//Proceedings of the 8th international conference on in- teUigent user interfaces. New York : ACM ,2003:263-266.
  • 7许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 8徐翔,王煦法.协同过滤算法中的相似度优化方法[J].计算机工程,2010,36(6):52-54. 被引量:37
  • 9吴湖,王永吉,王哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. 被引量:83
  • 10黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217

共引文献233

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部