期刊文献+

基于SVM-RFE特征选择的规则提取方法 被引量:6

Rule Extraction Method Based on SVM-RFE Feature Selection
下载PDF
导出
摘要 针对支持向量机的可解释性,提出了一种基于SVM-RFE特征选择的规则提取方法。这一方法在预处理阶段采用优化的SVM-RFE来获取重要属性集,并设计和实现一种变型的顺序覆盖规则算法进行规则生成和裁剪,以兼顾可理解性与准确率和忠实度之间的平衡。仿真实验表明,这一方法准确率较高,产生的规则数量和条件项数也比较少。 With regard to the interpretation of result based on SVM,a novel rule extraction method based on feature selection SVM-RFE is presented.During pre-extraction phase,an improved SVM-based feature selection SVM-RFE is adopted to rank the importance of attributes,and a modified sequential covering approach is used to extract rules from the modified support vectors,which adopts some technical methods to coordinate the accuracy and fidelity with comprehensibility.Numerical experiments have shown the high accuracy and good comprehensibility of the proposed approach.
作者 吴璐 WU Lu(Information Center,Shanghai Municipal Plan&Natural Resource Bureau,Shanghai 200003,China)
出处 《微型电脑应用》 2021年第9期150-154,共5页 Microcomputer Applications
关键词 可理解性 规则提取 SVM-RFE 顺序覆盖规则算法 interpretation rule extraction SVM-RFE sequential covering algorithm
  • 相关文献

参考文献6

二级参考文献43

共引文献45

同被引文献47

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部