期刊文献+

基于关联规则的隧道掘进中岩机信息感知互馈数据挖掘方法研究 被引量:4

Mutual Feedback Data-Mining Method for Rock-Machinery Information Perception in Tunnel Excavation Based on Association Rules
下载PDF
导出
摘要 为探明掘进机服役过程中岩体地质关键参数与掘进机工作参数间的耦合关系,在综合岩机参数静态映射关系基础上,将多维关联算法引入到隧道掘进岩机耦合模型的建立中。在充分利用服役过程地质岩层条件、掘进速度等原始数据的基础上采用Kmeans聚类方法处理,分类编码后,选取抗拉强度、抗压强度、峰斜指数、薄弱面间距、掘进速度、岩石连续性方向的α角、岩石类型7个主要参数。使用关联规则算法进行分析,总结出20条掘进机掘进规则。相较于决策树,其规则更加丰富直观,适用于初期决策。可以看出,关联算法作为一种有效的数据挖掘手段,能够为智能掘进提供理论参考依据。 To explore the coupling relationship between key geological parameters of rock mass and the working parameters of tunnel boring machines(TBMs),a multi-dimensional association algorithm is developed to establish a coupling model of TBM based on the static-mapping relationship of rock parameters.The K-means clustering method is used to determine the coupling relationship between geological and rock conditions,as well as the tunneling speed during the service process.After class coding,seven main parameters,including tensile strength,compressive strength,peak slope index,weak face spacing,tunneling speed,alpha angle,and rock type,are selected to analyze and summarize the rules of shield tunneling.Compared with the decision tree,the rules are more abundant and intuitive,making them suitable for early decisions.As an effective data-mining method,the association algorithm can provide a theoretical reference for intelligent tunneling.
作者 乔金丽 徐源浩 刘建琴 胡建帮 QIAO Jinli;XU Yuanhao;LIU Jianqin;HU Jianbang(School of Civil Engineering and Transportation,Hebei University of Technology,Tianjin 300401,China;School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)
出处 《隧道建设(中英文)》 CSCD 北大核心 2021年第8期1324-1329,共6页 Tunnel Construction
基金 国家自然科学基金项目(52075370)。
关键词 隧道掘进 岩机信息感知 数据挖掘 关联算法 智能决策 tunneling rock-machine information perception data mining association algorithm intelligent decision
  • 相关文献

参考文献5

二级参考文献76

共引文献207

同被引文献43

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部