期刊文献+

基于FPGA的模板匹配加速器的设计与实现 被引量:1

Design and implementation of template matching accelerator based on FPGA
下载PDF
导出
摘要 本文针对当前基于计算机视觉的织物瑕疵检测系统在实时性及经济性上无法满足实际生产需求这一问题,对瑕疵检测领域的模板匹配算法进行了改进、设计并实现了一种基于FPGA的模板匹配算法加速器。为了提升加速器的工作效率,深入分析了该加速器架构的处理时延,并从访存时延、传输时延、计算时延3个方面对加速器进行了优化,提升了总线带宽的利用率。实验结果表明,该加速器使得传统的模板匹配算法在时钟频率为150 HMz的Zynq-7000平台上获得了33 MHz的像素处理速率,即每秒可处理分辨率约为8192×4096大小的织物图片,与通用CPU i7-8750H相比,性能是其10.5倍,满足了实时性需求。同时该解决方案采用SoC技术取代了传统的PC级板卡式结构,降低了系统成本,应用前景广阔。 In order to solve the problem that the current fabric defect detection system based on computer vision fail to meet the demands of manufacturing process in terms of real-time and economic performance,the template matching algorithm in defect detection field was improved,and a template matching algorithm accelerator based on FPGA was designed and implemented.In order to improve the working efficiency of the accelerator,the processing delay of the accelerator architecture is deeply analyzed,and the accelerator is optimized from three aspects:access delay,transmission delay and computation delay,which improves the utilization of the bus bandwidth.Experimental result shows that the accelerator enables traditional template matching algorithms to achieve a pixel processing rate of 33 MHz on the Zynq-7000 platform with a clock rate of 150 MHz,that is,the accelerator can process a fabric image with the resolution of 8192×4096 per second.Compared with i7-8750H,the performance is 10.5 times higher than that of i7-8750H,which meets the real-time performance requirements.At the same time,the solution uses SoC technology to replace the traditional PC board structure,which reduces the cost of the system and has a broad application prospect.
作者 李锋 周仕杰 LI Feng;ZHOU Shijie(College of Computer Science and Technology,Donghua University,Shanghai 201620,China)
出处 《智能计算机与应用》 2021年第8期6-10,14,共6页 Intelligent Computer and Applications
关键词 织物瑕疵检测 模板匹配 FPGA 算法加速器 SOC fabric defect detection template matching FPGA algorithm accelerator SoC
  • 相关文献

参考文献3

二级参考文献38

  • 1高晓丁,汪成龙,左贺,梁继超.基于直方图统计的织物疵点识别算法[J].纺织学报,2005,26(2):121-123. 被引量:26
  • 2步红刚,黄秀宝.基于计算机视觉的织物疵点检测的近期进展[J].东华大学学报(自然科学版),2006,32(3):128-133. 被引量:12
  • 3王锋,焦国太,杜烨.基于数学形态学的织物疵点检测方法[J].测试技术学报,2007,21(6):515-518. 被引量:12
  • 4阮秋琦.数字图像处理学[M].北京:电子工业出版社.2013.
  • 5步红刚,黄秀宝,汪军.基于多分形特征参数的织物瑕疵检测[J].计算机工程与应用,2007,43(36):233-237. 被引量:13
  • 6TUCERYAN M, JAIN A K. Texture Analysis [M]// Handbook of Pattern Recognition and Computer Vision. Singapore: World Scientific Publishign Company, 1993: 276.
  • 7韩立伟,徐德,王麟琨.基于统计信息的织物瑕疵自适应检测[J].计算机工程与应用,2007,43(36):233-237.
  • 8CAMPBELL J G, FRALEY C, MURTAGH F, et al. Linear flaw detection in woven textiles using model- based clustering [ J ]. Pattern Recognition Letters, 1997, 18(14): 1539-1548.
  • 9KUMAR A, PANG G K H. Defect detection in textured materials using Gabor filters[ Jl. IEEE Transactions on Industry Applications, 2002, 38 (2) : 425 - 440.
  • 10DUNN D, HIGGINS W E. Optimal Gabor filters for texture segmentation [J].Image Processing IEEE Transactions, 1995, 4 (7) : 947 - 964.

共引文献32

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部