摘要
Metal–organic framework(MOF)membranes hold great promise in energy-efficient chemical separations.The outstanding challenges of the microstructural design stem from(1)thinning of membranes to immensely reduce the mass-transfer resistance(for high permeances);(2)tuning of orientation to optimize the selective transport of gas molecules,and(3)reinforcement of intercrystalline structure to subside leakage through defective gaps(for high selectivity).Here,we propose the ZIF-L membrane that is completely confined into the voids of the alumina support through an interfacial assembly process,producing an appealing membrane-interlocked-support(MIS)composite architecture that meets the requirements of the microstructural design of MOF membranes.Consequently,the membranes show average H2 permeances of above 4000 GPU and H_(2)/CO_(2) separation factor(SF)of above 200,representing record-high separation performances of ZIF-L membranes and falling into the industrial target zone(H_(2) permeance>1000 GPU and H_(2)/CO_(2) SF>60).Furthermore,the ZIF-L membrane possessing the MIS composite architecture that is established with alumina particles as scaffolds shows mechanical stability,scraped repeatedly by a piece of silicon rubber causing no selectivity loss.
金属-有机骨架(MOF)膜在低能耗化工分离领域具有广阔应用前景.其关键在于膜的微结构设计,所面临重要挑战有:(1)如何降低膜层厚度以极大减小传质阻力;(2)如何调控膜的孔道取向以优化分子选择性传输;(3)如何强化晶界结构以最大程度减少缺陷流,进而实现高渗透率和高分离选择性.本文利用原位界面组装策略制备ZIF-L膜.通过调变配体浓度,可将膜层完全限制在载体孔隙内,形成高度取向的膜-载体互锁型复合微结构,膜表观厚度为零,充分满足了上述设计原则.ZIF-L膜的气体测试结果显示,其H_(2)/CO_(2)分离因子超过200,H_(2)渗透率达4000 GPU以上,性能位于工业应用目标区域(H_(2)渗透率>1000 GPU,H_(2)/CO_(2)分离因子>60),为迄今H_(2)/CO_(2)分离性能最优的ZIF-L膜.再者,这种具有膜-载体互锁型复合微结构的ZIF-L膜,展现出良好的机械稳定性.以硅橡胶垫反复刮擦膜表面,不会造成选择性下降.这为MOF膜的微结构设计提供了重要方向.
作者
Kun Yang
Sulei Hu
Yujie Ban
Yingwu Zhou
Na Cao
Meng Zhao
Yifei Xiao
Weixue Li
Weishen Yang
杨昆;胡素磊;班宇杰;周应武;曹娜;赵萌;肖依非;李微雪;杨维慎(State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China;Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China;University of Chinese Academy of Sciences,Beijing 100039,China;Department of Chemical Physics,School of Chemistry and Materials Science,iCHeM,Chinese Academy of Sciences,Excellence Center for Nanoscience,University of Science and Technology of China,Hefei 230026,China;Dalian National Laboratory for Clean Energy,Dalian 116023,China)
基金
supported by the National Natural Science Foundation of China(21978283,22090060,and 22090063)
the Strategic Priority Research Program of Chinese Academy of Sciences(XDB17020400)
Liaoning Revitalization Talents Program(XLYC1801004)
the DNL Cooperation Fund,Chinese Academy of Sciences(DNL201920)
Youth Innovation Promotion Association of Chinese Academy of Sciences,and Dalian Institute of Chemical Physics(DICP ZZBS201711)
the financial support of National Key R&D Program of China(2018YFA0208603)
K.C.Wong Education Foundation(GJTD-2020-15)。