期刊文献+

装载α-生育酚的乳木果油固体脂质纳米颗粒的制备与表征 被引量:3

Preparation and Evaluation of Shea Butter Solid Lipid Nanoparticles Loaded withα-Tocopherol
下载PDF
导出
摘要 以吐温20和吐温80为乳化剂,天然的固体脂质乳木果油为脂质基质,通过高速剪切均质制备乳木果油固体脂质纳米颗粒(solid lipid nanoparticle,SLN)。乳木果油SLN冷却固化温度为4℃;当油水比例为5∶5~1∶9时,动态光散射仪测定乳木果油SLN粒径范围为30.43~278.13 nm,透射电镜观察发现,乳木果油SLN形态为球形。差示扫描量热仪测定结果显示,乳木果油SLN热峰值温度范围为19.05~28.96℃,低于乳木果油的热峰值温度(35.84℃)。而且,以乳木果油SLN为载体包埋亲脂性活性物质α-生育酚,包埋率高达95.11%,因此,将乳木果油SLN用作脂溶性活性物质的载体具有较大的应用潜力。 In this study,we fabricated shea butter solid lipid nanoparticles(SLNs)by a high-speed shear homogenization method with Tween 20 or Tween 80 as the emulsifier.SLNs were obtained by cooling down to 4℃.The particle size range of SLNs with oil to water ratio of 5:5 to 1:9,as determined by dynamic light scattering,was 30.43–278.13 nm.The transmission electron microscopic(TEM)images showed that the particle morphology was spherical.The thermal peak temperature of SLNs ranged from 19.05 to 28.96℃as measured by a differential scanning calorimeter,which was lower than that of shea butter(35.84℃).In addition,α-tocopherol,a lipophilic bioactive ingredient,was loaded into SLNs with encapsulation efficiency as high as 95.11%.Therefore,SLNs has great potential for application as a carrier for liposoluble bioactive materials.
作者 杨振 李曼 慕鸿雁 熊柳 孙庆杰 YANG Zhen;LI Man;MU Hongyan;XIONG Liu;SUN Qingjie(College of Food Science and Engineering,Qingdao Agricultural University,Qingdao 266000,China)
出处 《食品科学》 EI CAS CSCD 北大核心 2021年第18期7-14,共8页 Food Science
基金 国家自然科学基金面上项目(31671814) 山东省泰山学者项目(t401712058)。
关键词 均质 乳液 包埋率 载体 homogenization emulsion encapsulation efficiency carrier
  • 相关文献

参考文献4

二级参考文献51

  • 1谢新玲,王红霞,张高勇.微乳柴油的性能研究[J].应用化工,2005,34(6):353-356. 被引量:11
  • 2陈培丰.清洗型护发素研制探讨[J].福建轻纺,2007(4):1-4. 被引量:3
  • 3Mtiller R H, Mehnert W, Lucks J S, et al.. Solid lipid nanoparticles (SLN)-an alternative colloidal carrier system for controlled drug delivery [ J]. Eur. J. Phann. Biopharm. , 1995, 41(1) : 62 -69.
  • 4Weiss J, Decker E A, Mcclements D J, et al.. Solid lipid nanoparticles as delivery systems for bioactive food components [J]. Food Biophys., 2008, 3(2) :146 -154.
  • 5Sawant K K, Dodiya S S. Recent advances and patents on solid lipid nanoparticles [ J ]. Recent Patents Drug Deliv. Form., 2008, 2(2): 120-135.
  • 6Westsen K, Bunjes H, Koch M H J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential [ J ]. J. Control. Release, 1997, 48(2) : 223 -236.
  • 7MUller R H, Radtke M, Wissing S A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatoloigical preparations [ J ]. Adv. Drug. Delivery Rev. , 2002,54 ( 1 ) :131 - 155.
  • 8Schwarz C, Mehnert W, Lucks J S, et al.. Solid lipid nanoparticles (SLN) for controlled drug delivery. I: Production, characterization and sterilization [ J ]. J. Control. Release, 1994, 30(1) : 83 -96.
  • 9Wissing S A, Kayser O, Mtiller R H. Solid lipid nanoparticles for parenteral drug delivery [ J ]. Adv. Drug Deliv. Rev., 2004, 56(9) : 1257 - 1272.
  • 10Chen M J, Lee T, I-Iui H W, et al.. Nanosuspensions of a poorly soluble drug via microfluidization process [ P ]. USA, 20110124702A1.

共引文献12

同被引文献44

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部