摘要
本文利用临界点理论研究半线性Schrodinger方程{u=0,x∈Ωσ -△u=f(x,u),x∈Ω这里,Ω是R^(2)中的有界区域,f(x,u):Ω×R满足Trudinger-Moser不等式意义下的临界指数增长.通过对极小极大水平值进行精细估计,结合非Nehari流形方法和Trudinger-Moser不等式,获得了以上问题存在Nehari型基态解以及非平凡解的结果,改进了已有文献中的相应结果.
In this paper,we study the existence of solutions for the following semi-linear Schrodinger equations with critical exponential growth,{u=0,x∈Ωσ -△u=f(x,u),x∈Ωhere,Ω∈R^(2)is a bounded domain with smooth boundary.Through combining a more precise estimation about the minimax level with non-Nehari manifold method and TrudingerMoser inequality,we obtain the existence results of nontrivial solutions and Nehari-type ground state solution for the above equation.Our results improve and extend the existing results.
作者
陈静
CHEN Jing(College of Mathematics and Computing Science,Hunan University of Science and Technology,Xiangtan 411201,Chino)
出处
《应用数学学报》
CSCD
北大核心
2021年第5期619-631,共13页
Acta Mathematicae Applicatae Sinica
基金
湖南省自然科学基金(2019JJ50146)
湖南省教育厅科研项目(20B243)资助。