摘要
针对基于相位变换加权的可控响应功率(Steered Response Power-PHAse Transform,SRP-PHAT)定位算法精度高但实时性差的问题,本文引入基于到达时间差(Time Difference Of Arrival,TDOA)的定位算法以提高实时性,提出一种基于TDOA和搜索空间聚类(Search Space Clustering,SSC)优化的SRP-PHAT的组合算法-搜索空间收缩聚类算法.该算法先利用TDOA定位算法经过离群值校正后得到声源在方向角和径向距离上的估计范围,之后根据估计声源范围进行搜索区域收缩,最后利用SRP-PHAT-SSC算法在收缩区域内进行细粒度(5 cm)的空间搜索计算,得到估计声源的三维坐标.本文采用五元麦克风阵列,利用虚源法模拟室内声场,通过Matlab对声源进行了三维定位仿真.实验结果表明,改进后的算法与基于SRP-PHAT的全网格搜索(Full Grid Search,FGS)算法和SSC算法相比,在三维定位上的实时性和鲁棒性都得到了提高.
The Steered Response Power-PHAse Transform(SRP-PHAT)localization algorithm has high accuracy but poor real-time performance.In response to this problem,this study introduces a localization algorithm based on Time Difference Of Arrival(TDOA)to improve real-time performance and then proposes a combination algorithm based on TDOA and Search Space Clustering(SSC),search space shrinking clustering,to optimize SRP-PHAT.First,the TDOA localization algorithm is used to estimate the range of the sound source in the direction angle and radial distance after outlier correction.Then,the search area is shrunk according to the estimated sound source range.Finally,fine-grained(5 cm)space search calculations in the shrinking area are performed by the SRP-PHAT-SSC algorithm to obtain the threedimensional(3 D)coordinates of the estimated sound source.A five-element microphone array and the virtual source method are employed to simulate the indoor sound field,and the 3 D localization of the sound source is simulated by Matlab.The experimental results show that compared with the Full Grid Search(FGS)algorithm and the SSC algorithm based on SRP-PHAT,the improved algorithm has great real-time performance and robustness in 3 D localization.
作者
黄静
胡馨月
HUANG Jing;HU Xin-Yue(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处
《计算机系统应用》
2021年第9期212-218,共7页
Computer Systems & Applications
关键词
声源定位
三维空间
TDOA
SRP-PHAT-SSC
搜索空间收缩聚类
实时性
鲁棒性
sound source localization
three-dimensional space
Time Difference Of Arrival(TDOA)
Steered Response Power-PHAse Transform-Search Space Clustering(SRP-PHAT-SSC)
search space shrinking clustering
real-time performance
robustness