期刊文献+

Generalized Oppositional Moth Flame Optimization with Crossover Strategy:An Approach for Medical Diagnosis

原文传递
导出
摘要 In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems.Therefore,in this work,a generalized oppositional MFO with crossover strategy,named GCMFO,is presented to overcome the mentioned defects.In the proposed GCMFO,GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate;crisscross search(CC)is adopted to promote the exploitation and/or exploration ability of MFO.The proposed algorithm’s performance is estimated by organizing a series of experiments;firstly,the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems.Secondly,GCMFO is applied to handle multilevel thresholding image segmentation problems.At last,GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases,including the appendicitis diagnosis,overweight statuses diagnosis,and thyroid cancer diagnosis.Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy.It also indicates that the presented GCMFO has a promising potential for application.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第4期991-1010,共20页 仿生工程学报(英文版)
基金 This research is supported by the National Natural Science Foundation of China(62076185,U1809209) Zhejiang Provincial Natural Science Foundation of China(LY21F020030) Wenzhou Science&Technology Bureau(2018ZG016) Taif University Researchers Supporting Project Number(TURSP-2020/125) Taif University,Taif,Saudi Arabia。
  • 相关文献

参考文献1

  • 1Guo-qiang ZENG 1,Yong-zai LU 2,Wei-Jie MAO 2 (1 College of Physics & Electronic Information Engineering,Wenzhou University,Wenzhou 325035,China) (2 State Key Laboratory of Industrial Control Technology,Institute of Cyber-Systems and Control,Zhejiang University,Hangzhou 310027,China).Modified extremal optimization for the hard maximum satisfiability problem[J].Journal of Zhejiang University-Science C(Computers and Electronics),2011,12(7):589-596. 被引量:4

二级参考文献36

  • 1Alava, M., Ardelius, J., Aurell, E., Kaski, P., Krishnamurthy, S., Orponen, E, Seitz, S., 2008. Circumspect descent prevails in solving random constraint satisfaction problems. PNAS, 105(40): 15253-15257. [doi:10.1073/pnas.0712263105].
  • 2Altarelli, F., Monasson, R., Smerjian, G., Zamponi, F., 2009. A Review of the Statistical Mechanics Approach to Random Optimization Problems. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press, the Netherlands.
  • 3Bak, P., Sneppen, K., 1993. Punctuated equilibrium and criti cality in a simple model of evolution. Phys. Rev. Lett., 71(24):4083-4086. [doi:10.1103/PhysRevkett.71.4083].
  • 4Bak, P., Tang, C., Wiesenfeld, K., 1987. Self-organized criti cality: an explanation of the I/f noise. Phys. Rev. Lett., 59(4):381-384. [doi:10.1103/PhysRevLett.59.381].
  • 5Barthel, W., Hartmann, A.K., Weigt, M., 2003. Solving satisfiability problems by fluctuations: the dynamics of sto chastic local search algorithms. Phys. Rev. E, 67(6): 066104. [doi:10.1103/PhysRevE.67.066104].
  • 6Biere, A., Heule, M., Maaren, H., Walsh, T., 2009. Handbook of Satisfiabifity. IOS Press, the Netherlands.
  • 7Biroli, G., Cocco, S., Monasson, R., 2002. Phase transitions and complexity in computer science: an overview of the statistical physics approach to the random satisfiability problem. Phys. A, 306:381-394. [doi:10.1016/S0378-4371 (02)00516-2].
  • 8Boettcher, S., Percus, A.G., 2000. Nature's way of optimizing. Artif Intell., 119(1-2):275-286, [doi:10.10161S0004-3702 (00)00007-2].
  • 9Boettcher, S., Percus, A.G., 2001a. Optimization with extremal dynamics. Phys. Rev. Lett., 86(23):5211-5214. [doi:10. 1103/PhysRevLett.86.5211].
  • 10Boettcher, S., Percus, A.G., 200lb. Extremal optimization for graph partitioning. Phys. Rev. E, 64(2):026114. [doi:10. 1103/PhysRevE.64.026114].

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部