期刊文献+

太阳能海水晒盐强化技术的研究

Study on the Strengthening Technology of Salt Solarization
下载PDF
导出
摘要 基于太阳能高效界面蒸发技术,利用活性炭过滤棉、海绵、百洁布和烧结不锈钢形成不同的双层组合,进行优化,以促进太阳能海水晒盐过程。实验结果表明:在光强1 000 W·m^(-2)下,活性炭过滤棉与海绵的双层组合能更有效促进水分的蒸发,光热转化层距水面高度在4 mm左右、仅铺设1层时(厚度为3 mm)会有更好的蒸发效果;在盐聚集的存在下10 h内仍然有高效的水蒸发速率;进行了10个循环试验,该双层结构仍然能够保证较好的蒸发效果。选出的2种成本低廉的材料能够促进太阳能光热产生水蒸汽的转换,水分蒸发速率为1.2 kg·m^(-2)·h^(-1),热效率为78%,有着较好的蒸发效果,为海水晒盐提供了一种新的思路。 Based on the efficient solar steam generation technology,the activated carbon filter cotton,sponge,scouring cloth and sintered stainless steel were used to form different two-layer combinations and optimized to promote the generation of steam. The experimental results show that under the light intensity of 1 000 W·m^(-2),the double-layer combination of activated carbon filter cotton and sponge can promote the evaporation of water more efficiently. The height of the light-to-heat conversion layer from the water surface is about 4 mm,when only one layer is laid( thickness is 3 mm),there is a better evaporation effect;in the presence of salt accumulation,there is still an efficient water evaporation rate within 10 hours;after 10 cycles of experiments,the double-layer structure still ensures good evaporation effect. The two low-cost materials selected in this paper can promote the conversion of water vapor produced by solar light and heat. The water evaporation rate is 1. 2 kg·m^(-2)·h^(-1),and the thermal efficiency is 78%,which works well. The work of this article provides a new way for efficient salt solarization.
作者 黄群武 田作旭 王一平 Huang Qunwu;Tian Zuoxu;Wang Yiping(School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China;School of Architecture,Tianjin University,Tianjin 300072,China)
出处 《化学工业与工程》 CAS CSCD 北大核心 2021年第3期49-56,共8页 Chemical Industry and Engineering
关键词 太阳能 高效界面蒸发 低成本材料 晒盐 solar energy efficient solar steam generation low-cost materials salt solarization
  • 相关文献

参考文献1

二级参考文献41

  • 1Gur I, Fromer N A, Geier M L, et al. [J]. Science, 2005,310 : 462.
  • 2Nanu M, Schoonman J, Goossens A.[J].Nano Lett, 2005, 5:1716.
  • 3Editorial. [J]. Thin Solid Films, 2006,1:511.
  • 4Conibeer G, Green M, Corkish R, et al.[J]. Thin Solid Films, 2006,511-512:654.
  • 5Vazsonyi E, Clercq K D, Einhaus R, et al. [J]. Sol Energy Mater Sol Cells, 1999, 57:179.
  • 6Macdonald D H, Cuevas A, Kerr M J, et al. [J]. Sol Energy, 2004,76:277.
  • 7Haase C, Stiebig H. [J]. Proc SPIE, 2006, 6197: 619705.
  • 8Kanamori Y, Sasaki M, Hane K. [J]. Opt Lett, 1999, 24 : 1422.
  • 9Huang Y F, Jen Y J, ChenK H, et al. [J].Proc SPIE, 2008, 7039:70390W-1.
  • 10Boden S A, Bagnall D M. [J]. Appl Phys Lett, 2008, 93: 133108.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部