期刊文献+

基于RGB-D SLAM的智能车自主避障与路径规划试验研究 被引量:12

Experimental Research on Autonomous Obstacle Avoidance and Path Planning of Intelligent Vehicle Based on RGB-D SLAM Technology
下载PDF
导出
摘要 针对GPS信号弱、导航数据缺失场景下自主移动车辆难以精准定位的问题,采用即时定位与地图构建(SLAM)技术实现未知环境下无人小车地图构建与自主定位功能,采用动态A*算法实现了无人小车的避障与路径规划。分别进行了验证试验和未知环境下局部路径规划及全局路径规划试验,结果表明,提出的方案能有效地控制小车自主规划路径,避开障碍物到达目的地。 In order to solve the problem that it is difficult for autonomous mobile vehicles to accurately locate in scenarios with weak GPS signals and missing navigation data,Simultaneous Localization and Mapping(SLAM)technology is employed to realize the map and autonomous positioning function of the unmanned car in unknown environments,and the dynamic A*algorithm is used to realize the obstacle avoidance and path planning of the unmanned car.Verification experiments,local path planning under unknown environment and global path planning experiments are carried out respectively.The results show that the scheme proposed in this paper can effectively control the autonomous planning of the car to avoid obstacles to reach the destination.
作者 李兆凯 李龙勇 李泽晖 孔德成 宋绪丁 Li Zhaokai;Li Longyong;Li Zehui;Kong Decheng;Song Xuding(School of Automobile,Chang’an University,Xi’an 710064;Key Laboratory of Road Construction Technology and Equipment of MOE,Chang’an University,Xi’an 710064;FAW Jiefang Automotive Co.,Ltd.,Changchun 130011;Jilin University,Changchun 130025)
出处 《汽车技术》 CSCD 北大核心 2021年第9期55-62,共8页 Automobile Technology
基金 国家自然科学基金项目(51905043) 中央高校基本科研业务费专项资金项目(300102228105)。
关键词 RGB-D SLAM 自主移动小车 避障试验 路径规划 无人驾驶 RGB-D SLAM Autonomous mobile vehicle Obstacle avoidance test Path planning Unmanned driving
  • 相关文献

参考文献8

二级参考文献64

  • 1李辉,祁宇明.一种复杂环境下基于深度强化学习的机器人路径规划方法[J].计算机应用研究,2020,37(S01):129-131. 被引量:13
  • 2朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 3戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 4Zamirian M, Kamyad A V, Farahi M H. A novel algorithm for solving optimal path planning problems based on parametrization method and fuzzy aggregation [J]. Physics Letters A, 2009,373 (38) :3439.
  • 5Pratihar D K, Deb K, Ghosh A. Fuzzy-genetic algorithms and time-optimal obstacle-free path generation for mobile robots[J].Engineering Optimization, 1999,32 (1) : 117.
  • 6Latombe J C. Robot motion planning[M]. Kluwer Academic Publishing, Norwell, MA, 1991.
  • 7Barraquand J, Langois B, Latombe J C. Numerical potential field techniques for robot path planning[J]. IEEE Transactions on Robotics and Automation, Man and Cybernetics, 1992, 22 (2) :224.
  • 8Begum M,Mann G K l,Gosine R G. Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots[J]. Applied Soft Computing, 2008,8 (1) : 150 - 165.
  • 9Dijkstra E W. A note on two problems in connection with graphs[J]. Numerische Mathematik, 1959,1 (1) : 269.
  • 10Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths [J].IEEE Transactions on Systems, Science, and Cybernetics SSC, 1968, 4(2) : 100.

共引文献447

同被引文献125

引证文献12

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部