期刊文献+

基于非对称残差注意网络的目标跟踪算法 被引量:1

An object tracking algorithm based on asymmetric residual attention network
下载PDF
导出
摘要 针对目标跟踪算法在运动目标中存在的背景干扰和鲁棒性问题,提出一种基于Siamese RPN++改进的非对称残差注意网络算法.通过在模板分支对应的网络中添加非对称残差注意力结构,从而提取出采样图像的共同特征,形成较为稳定的目标轮廓,解决了目标运动背景发生变化的问题;采用自适应权值更新的方法融合不同区域候选网络模块输出的特征,得到更为鲁棒性的尺度变化特征表达,解决了目标形变的问题.实验结果表明:提出的改进算法在具有挑战的跟踪测试视频上取得了良好的跟踪精度,且具有较好的鲁棒性,能够较好地应对运动背景变化、尺度变化等问题. In order to solve the background interference and robustness problems of object tracking algorithm in moving targets,an asymmetric residual attention network algorithm based on Siamese RPN++was proposed.First,aAsymmetric residual attention structure is added to the network corresponding to the template branch,so as to extract the common features of the sampled images,form a relatively stable target contour,and solve the problem that the target moving background changes.The adaptive weight updating method is adopted to fuse the output features of candidate network modules in different regions to obtain more robust expression of scale change features and solve the problem of target deformation.The experimental results show that the proposed improved algorithm has good tracking accuracy and robustness in challenging tracking test videos,and can deal with the changes of moving background and scale.
作者 崔珂璠 熊淑华 陈洪刚 吴晓红 何小海 CUI Kefan;XIONG Shuhua;Chen Honggang;WU Xiaohong;HE Xiaohai(College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
出处 《微电子学与计算机》 2021年第9期8-16,共9页 Microelectronics & Computer
基金 国家自然科学基金(61871278) 四川省科技计划项目(2019YFH0034)。
关键词 目标跟踪 孪生网络 自适应权值更新 非对称残差注意力 object tracking siamese network adaptive weight update asymmetric residual attention
  • 相关文献

参考文献2

二级参考文献10

  • 1Fukunaga K, Hostetler L. The estimation of the gra- dient of a density function, with applications in pattern recognition [J]. Information Theory, IEEE Transac- tions on, 1975, 21(1): 32-40.
  • 2Cheng Y. Mean shift, mode seeking, and clustering [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1995, 17(8): 790-799.
  • 3Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shiftComputer Vision and Pattern Recognition [C]/// Proceedings. IEEE Conference on Hilton Head Island, sc: IEEE, 2000, 2: 142-149.
  • 4Collins R T. Mean-shift blob tracking through scale space Computer Vision and Pattern Recognition, 2003. [C]// Proceedings. 2003 IEEE Computer Socie- ty Conference on Computer Vision and Pattern Recog- nilion. [s. 1. ] : IEEE, 20032.
  • 5Elgammal A, Duraiswami R, Davis L S. Probabilistic tracking in joint feature-spatial spacesComputer Vision and Pattern Recognition [C] // Proceedings. 2003 IEEE Computer Society Conference on. [s. 1. ]:IEEE, 2003 : 781-788.
  • 6Zhang H, Huang Z, Huang W, et al. Kernel-based method for tracking objects with rotation and transla- tion[C]///Pattern Recognition, Proceedings of the 17 th International Conference on. [s. 1. ].IEEE, 2004: 728- 731.
  • 7Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors Computer Vision and Pattern Recognition, I-C~// Proceedings of the 2004 IEEE Computer Society Conference on. Es. 1. ]: IEEE, 2004:506-513.
  • 8李培华,肖莉娟.基于Mean Shift的相似性变换和仿射变换目标跟踪算法[J].中国图象图形学报,2011,16(2):258-266. 被引量:16
  • 9黄伟,谭鹤良,彭晓燕,陈源.VC++中一种快速图像处理方法[J].湖南大学学报(自然科学版),2000,27(S3):31-37. 被引量:3
  • 10董蓉,李勃,陈启美.基于SIFT特征的目标多自由度mean-shift跟踪算法[J].控制与决策,2012,27(3):399-402. 被引量:22

共引文献13

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部