期刊文献+

基于平移窗运动想象脑电信号活动段提取 被引量:1

Activity segment extraction of electroencephalogram for imagery movement based on translating window
下载PDF
导出
摘要 为了迅速、准确地识别运动想象的脑电信号,提出了一种基于平移窗的运动想象脑电信号活动段提取方法。该方法对运动想象脑电信号Mu/Beta节律的事件相关同步化/去同步化(ERS/ERD)特征进行检测,提取ERS/ERD特征明显的时段;再利用统计量进行特征提取,通过Classify分类器进行信号分类。利用2003年BCI竞赛data setⅢ进行测试,分类准确率达到83.5714%。该方法可以评价受试者的脑活动状态,提高运动想象脑电信号的识别准确率,对脑-机接口实时控制系统的研究有一定的帮助。 In order to quickly and accurately identify electroencephalography(EEG)for imagery movement,in this paper,a method is proposed for extracting active segments of EEG signal for imagery movement based on translating window.This method detects the ERS/ERD characteristics of EEG signal,extracts the time periods with obvious ERS/ERD characteristics,uses the statistics to extract feature,and classifies them with the Classify classifier.Using experiment data setⅢof BCI competition in 2003,the classification accuracy rate reaches 83.5714%.This method can evaluate the brain activity state of subjects,improve the recognition accuracy of motor imagery EEG signals,and be beneficial to the research of brain-computer interface real-time control system.
作者 张莉 王凯瑞 李杨 汪清山 蔡靖 王钢 Zhang Li;Wang Kairui;Li Yang;Wang Qingshan;Cai Jing;Wang Gang(College of Instrumentation&Electrical Engineering,Jilin University,Changchun 130026,China;Beihua University,Jilin 132013,China)
出处 《电子技术应用》 2021年第9期35-38,共4页 Application of Electronic Technique
基金 2019年度吉林大学大学生创新训练计划省级项目(201910183793) 吉林省教育厅“十三五”科学技术项目(JJKH20200964KJ) 吉林省科技计划项目(20190303038SF,20190303043SF)。
关键词 脑电信号识别 活动段检测 事件相关同步化/去同步化 Mu/Beta节律 recognition of electroencephalograph active segments detection event-related synchronization/desynchronization Mu/Beta rhythm
  • 相关文献

参考文献6

二级参考文献105

  • 1赵丽,万柏坤,高扬.独立分量分析方法在脑电信号预处理中的应用研究[J].仪器仪表学报,2003,24(z1):496-498. 被引量:8
  • 2崔守志,胡景旭.Experion PKS系统在净化装置中的应用[J].内蒙古石油化工,2012,38(12):30-32. 被引量:5
  • 3张爱华,赵予晗.脑电信号相同步分析在识别左右手想象运动中的作用[J].中国临床康复,2005,9(48):4-6. 被引量:14
  • 4杨帮华,颜国正,鄢波.基于离散小波变换提取脑机接口中脑电特征[J].中国生物医学工程学报,2006,25(5):518-522. 被引量:20
  • 5Virts J. The third international meeting on brain-computer interface technology: making a difference [ J ]. IEEE Trans Neural Syst Rehabil Eng,2006,14(2) : 126 - 127.
  • 6Vaughan TM. Brain-computer interface technology: a review of the second international meeting [J]. IEEE Trans Neural Syst Rehabil Eng,2003,11 (2) :94 - 109.
  • 7Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interface for communication and control [J]. Clinical N europhyslology, 2002,113(6 ) : 767 - 791.
  • 8Brett DM, Justin WH, Sebastian S. BCI Competiton 2003-Data Set Ia: combining gamma-band power with slow cortical potentials to improve single-trlal classification of electroencephalographic signals [J]. IEEE Trans Biomed Eng,2004,51(6) :1052- 1056.
  • 9Blanchard G, Blankertz B. BCI Competition 2003-Data Set IIa: spatial patterns of self-controlled brain rhythm modulations [ J ]. IEEE Trans Biomed Eng,2004,51(6) :1062 - 1066.
  • 10Weiskopf N, Mathiak K, Simon WB, et al. Principles of a braincomputer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) [J]. IEEE Trans Biomed Eng,2004,51 (6) :966 - 970.

共引文献66

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部