期刊文献+

使用局部大气光的单幅图像去雾算法 被引量:5

Single Image Dehazing Algorithm Using Local Atmospheric Light
下载PDF
导出
摘要 针对传统算法去雾后图像偏暗的问题,根据去雾后图像对比度和亮度均应该增加的标准提出了一种高亮度和对比度的去雾算法。首先依据大气光与复原图像亮度成反比事实,设置像素红绿蓝(RGB)三个颜色分量均值为局部级粗糙大气光,使用具有较好抑制光晕效应的半全局加权最小二乘算法优化获取局部级大气光;然后根据去雾图像方差与大气透射率成反比事实,使用基于像素最小颜色分量的大气散射函数计算粗糙透射率,然后使用局部均值滤波器优化透射率;最后结合雾天成像模型恢复无雾图像。实验结果表明所提算法去雾图像的梯度、亮度和速度等客观指标均优于传统算法,其中亮度最少增强1.5倍。所提算法能提高去雾图像亮度、丰富图像细节和提高去雾速度,具有较好的工程应用价值。 Aiming at the problem that hazy images will darken after dehazing,a dehazing algorithm with high brightness and contrast was proposed.First,based on the fact that atmospheric light was inversely proportional to the brightness of the restored image,the average value of the red,green,blue(RGB)color channels of the pixel was used as local raw atmospheric light,and the atmospheric light was optimized by the semi-global weighted least square algorithm.Then according to the fact that the dehazing image variance was inversely proportional to the atmospheric transmission map,and the atmospheric scattering function based on the minimum color channel of pixels was used to calculate the raw transmission map,and then used the local mean filter to optimize transmission map.Finally,the haze-free image was restored with the Koschmieder model.The experimental results show that the gradient,brightness and speed of the proposed algorithm are better than traditional algorithm,and the brightness is enhanced by at least 1.5 times.It has the advantages of high brightness,rich details and fast dehazing speed.
作者 唐斌 申红婷 龙文 TANG Bin;SHEN Hong-ting;LONG Wen(School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China;Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550025, China)
出处 《科学技术与工程》 北大核心 2021年第26期11246-11252,共7页 Science Technology and Engineering
基金 贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]165) 贵州财经大学校级科研基金(2018XQN01) 贵州省教育厅创新群体项目(黔教合KY字[2021]015)。
关键词 图像去雾 大气耗散函数 半全局加权最小二乘 局部大气光 保边滤波器 image dehazing atmospheric dissipation function semi-global weighted least squares local atmospheric light edge-preserving filter
  • 相关文献

参考文献8

二级参考文献60

  • 1Fattal R. Single image dehazing [J]. ACM Transactions on Graphics(TOG), 2008, 27(3): 1-9.
  • 2He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2009: 1956-1963.
  • 3He K, Sun J, Tang X. Guided image filtefing[C]//European Conference on Computer Vision(ECCV), 2010: 1-14.
  • 4Tarel J, Hauti N. Fast visibility restoration from a single color or gray level image[C]//IEEE International Conference on Computer Vision (ICCV), 2009: 2201-2208.
  • 5Caraffa L, Tarel J. Markov random field model for single image defogging [C]//Intelligent Vehicles Symposium, 2013: 994-999.
  • 6Tarel J, Hauti N. ,Vision enhancement in homogeneous and heterogeneous fog [J]. IEEE Intelligent Transportation Systems Magazine, 2012, 4(2): 6-20.
  • 7Krishnan D, Fattal R, Szeliski R. Efficient preconditioning of laplacian matrices for computer graphics [J]. ACM Transaction on Graphics, 2013, 32(4): 1-15.
  • 8Tan R T.Visibility in bad weather from a single image[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Alaska,USA:IEEE Computer Society,2008:1956-1963.
  • 9Fattal R.Single image dehazing[J].ACM Transactions on Graphics,2008,27(3):1-9.
  • 10He K M,Sun J,Tang X 0.Single image haze removal using dark channel prior[C]// Proceeding of IEEE Conference on Computer Vision and Pattern Recognition.Miami,USA:IEEE Computer Society,2009:1956-1963.

共引文献151

同被引文献36

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部