期刊文献+

基于CNN的二维四通道不可分小波滤波器识别 被引量:2

2D 4⁃channel non⁃separable wavelet filter recognition based on CNN
下载PDF
导出
摘要 二维四通道不可分小波在图像融合中得到了成功的应用,但其滤波器组的选取都是依靠经验手动完成的,这样会导致图像融合的结果难以达到最优。针对在图像融合的过程中选择融合效果最优的滤波器组的问题,提出基于CNN的二维四通道不可分小波滤波器组的识别方法。该方法利用卷积神经网络强大的学习功能,对构造的大量二维四通道不可分小波滤波器组进行训练。让训练好的网络对滤波器组进行识别,让这些识别的不同类别滤波器组分别作图像融合,并对比其融合效果。实验结果表明,该方法在测试集上的识别准确率达到0.999 5,对训练测试集外的滤波器组同样识别准确,解决了图像融合过程中二维不可分小波滤波器组选取困难的问题。 The 2D 4⁃channel non⁃separable wavelet has been successfully applied in the image fusion,but the selection of its filter bank is manually completed by relying on experience,which makes it difficult to achieve the optimal result of image fusion.How to choose a filter bank with the optimal fusion effect in the process of image fusion is still an outstanding issue.In view of the above,a CNN⁃based recognition method of 2D 4⁃channel non⁃separable wavelet filter banks is proposed.In this method,a large number of constructed 2D 4⁃channel non⁃separable wavelet filter banks are trained by virtue of the powerful learning function of CNN.The trained network is used to recognize the filter banks,and then these different types of filter banks identified are used for image fusion respectively and their fusion effects are contrasted.The experimental results show that the proposed method′s recognition accuracy on testing set is 0.9995.The method also has an accurate recognition for those filter banks outside the testing set.It has been verified that the method can solve the difficulty in selecting 2D non⁃separable wavelet filter banks in the process of image fusion.
作者 刘斌 袁东 LIU Bin;YUAN Dong(School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China)
出处 《现代电子技术》 2021年第19期55-60,共6页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61471160)。
关键词 滤波器识别 不可分小波 卷积神经网络 多聚焦图像 图像融合 图像处理 filter recognition non⁃separable wavelet CNN multi⁃focus image image fusion image processing
  • 相关文献

参考文献5

二级参考文献40

  • 1李春梅,王汝霖,李淑霞,李国新,刘洁.基于邻域平均梯度的小波图像融合[J].微计算机信息,2006(12X):306-307. 被引量:15
  • 2Munechika C K, Warnick J S, Salvaggio C, Schott J R. Resolution enhancement of multi-spectral image data to improve classification accuracy. Photogrammetric Engineering and Remote Sensing, 1993, 59(1): 67-72.
  • 3Zhang Yun, Hong Gang. An IHS and waveletintegrated approach to improve pan-sharpening visual quality of natural eolour IKONOS and QuiekBird images. Information Fusion, 2005, 6(3): 225-234.
  • 4Wang Z, Ziou D, Armenakis C, Li D, Li Q. A comparative analysis of image fusion methods. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1391-1402.
  • 5Chavez P S, Sides S C, Anderson J A. A comparison of three different methods to merge multiresolution and multispeetral data: TM & SPOT Pan. Photogrammetric Engineering and Remote Sensing, 1991, 57(3): 295-303.
  • 6Sheffigara V K. A generalized component substitution technique for spatial enhancement of multispectral image using a high resolution data set. Photogrammetrie Engineering and Remote Sensing, 1992, 58(5): 561-567.
  • 7Yocky D A. Image merging and data fusion by means of the discrete two-dimensional wavelet transform. Journal of the Optical Society of America A, 1995, 12(9) : 1834-1841.
  • 8Chui Charles K. An Introduction to Wavelets. New York: Academic Press, 1992.
  • 9Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
  • 10Nunez Jorge, Otazu Xavier, Fors Octavi et al. Multiresolution based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscienee and Remote Sensing, 1999, 37(3): 1204-1211.

共引文献48

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部