期刊文献+

深度学习图像重建算法在提高CCTA图像质量中的临床价值研究 被引量:9

Clinical Application Value of Deep Learning Image Reconstruction Algorithm in Improving CCTA Image Quality
原文传递
导出
摘要 目的对比常规迭代重建算法,评价深度学习图像重建(DLIR)算法(TrueFidelity^(TM))在提高冠状动脉CT血管造影(CCTA)图像质量中的临床应用价值。方法回顾性纳入40例接受相同扫描条件CCTA检查的患者。用ASiR-V 0%、ASiR-V 50%、ASiR-V 80%和DLIR两个水平(中[M]和高[H])重建CCTA数据。通过对比图像噪声(SD)、信噪比(SNR)、对比度噪声比(CNR)进行不同图像重建算法间的客观评价。由两位高年资影像医师双盲对主干血管图像质量进行主观评价(Liker 4分制)。结果ASiR-V 0%、ASiR-V 50%、ASiR-V 80%、DLIR-M、DLIR-H重建图像的整体对比图像噪声逐渐降低,差异具有统计学意义(P<0.05),经DLIR-H处理后的图像噪声明显低于其他处理方式(P<0.05),SNR和CNR值逐渐升高,差异具有统计学意义(P<0.01),DLIR-H重建图像的SNR和CNR均优于其他重建图像(P<0.05)。ASiR-V 0%、ASiR-V 50%、ASiR-V 80%、DLIR-M、DLIR-H算法在冠状动脉主要分支的主观评分均无显著性差异(P>0.05)。结论与ASiR-V算法相比,DLIR算法能显著降低噪声,提高CCTA的SNR和CNR。因此在提高CCTA图像质量的临床应用方面,DLIR算法具有较大的应用潜力。 Objective To evaluate the deep learning image reconstruction(DLIR)algorithm(Truefidelity^(TM))to improve the image quality of coronary CT angiography(CCTA),compared Adaptive Statistical iterative Reconstruction-V(ASiR-V).Methods Forty patients who underwent CCTA with the same scan conditions were included retrospectively.The CCTA data were reconstructed with ASiR-V 0%、ASiR-V 50%,ASiR-V 80%and DLIR at two levels(medium[M]and high[M]).The objective evaluation of image is carried out by imaging noise(IN),signal to noise ratio(SNR)and contrast to noise ratio(CNR).Two senior radiologists were selected to evaluate the image quality(Liker 4-point system).Results Noise of images reconstructed with ASiR-V 0%,ASiR-V 50%,ASiR-V 80%,DLIR-M,DLIR-H were gradually decreased with significant difference(P<0.05).The value of DLIR-H was significantly lower than the other image noise(P<0.05).SNR and CNR values were gradually increasing.The difference was statistically significant(P<0.01).SNR and CNR of image reconstructed with DLIR-H were better than other reconstructed images(P<0.05).There was no significant difference in the subjective scores of ASiR-V 0%,ASiR-V 50%,ASiR-V 80%,DLIR-M and DLIR-H algorithms in the main coronary artery branches(P>0.05).Conclusion Compared with ASiR-V,DLIR algorithm can significantly reduce the noise and improve the SNR and CNR of CCTA.Therefore,DLIR algorithm has great potential in clinical application of improving CCTA image quality.
作者 张超 董栋 王铭君 韩鹏熙 ZHANG Chao;DONG Dong;WANG Mingjun(Department of Radiology,The First Affiliated Hospital of Shandong First Medical University&Shandong Provincial Qianfoshan Hospital,Shandong Provincial Key Laboratory of Medical and Health Abdominal Imaging,Shandong Lung Cancer Institute,Shandong Institute of Neuroimmunity,Shandong Province 250014,P.R.China)
出处 《临床放射学杂志》 北大核心 2021年第6期1126-1130,共5页 Journal of Clinical Radiology
关键词 冠状动脉CT血管造影 深度学习图像重建 图像质量 迭代重建技术 Deep learning image reconstruction Coronary computed tomographic angiography Image quality Adaptive statistical iterative reconstruction-V
  • 相关文献

参考文献6

二级参考文献45

  • 1高建华,孙宪昶,李剑颖,李娜,夏庆堂,赵雯,戴汝平.不同前置滤线器对64层螺旋CT冠状动脉成像质量及放射剂量影响的对照研究[J].中华放射学杂志,2007,41(8):858-861. 被引量:51
  • 2高建华,戴汝平,郑静晨,王贵生,李剑颖,崔英,赵雯.应用后过滤重组降低64层螺旋CT心脏检查X线剂量的初步研究[J].中华放射学杂志,2007,41(10):1014-1018. 被引量:38
  • 3Chen W, Zheng R,Zhang S, et al. Lung cancer incidence andmortality in china, 2009. Thoracic Cancer, 2013, 4(2) : 106-108.
  • 4Tammemagi MC, Lam S. Screening for lung cancer using lowdose computed tomography. BMJ,2014, 348 :g2253.
  • 5Tack D, Gevenois PA. Radiation dose in computed tomography ofthe chest. JBR-BTR, 2004,87(6):281-288.
  • 6Kalra MK, Maher MM, Rizzo S, et al. Radiation exposure fromchest CT: Issues and strategies. J Kore Med Sci, 2004, 19(2):159-166.
  • 7Horeweg N, Nackaerts K, Oudkerk M, et al. Low-dose compu-ted tomography screening for lung cancer: Results of the firstscreening round. J Com Effectiv Res, 2013, 2(5) :433-436.
  • 8Galanski M, Nagel HD, Stamm G. CT radiation exposure risk inGermany. Rofo, 2001,173(10) :R1-R66.
  • 9Karabulut N, Ariyurek M. Low dose CT: Practices and strate-gies of radiologists in university hospitals. Diagnos InterventionalRadiol, 2006,12(1):3-8.
  • 10Prasad SR, Wittram C, Shepard JA, et al. Standard-dose and50%-reduced-dose chest C'T: Comparing the effect on imagequality. AJR Am J Roentgenol, 2002,179(2) :461-465.

共引文献212

同被引文献37

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部