期刊文献+

基于BLUE与PCRLB的快速雷达资源管理

Fast Radar Resource Management Based on BLUE and PCRLB
下载PDF
导出
摘要 为提高相控阵雷达资源管理的实时性,提出了一种基于最优线性无偏估计滤波(Best Linear Unbiased Estimation,BLUE)和后验克拉美罗界(Posterior Cramer-Rao Lower Bound,PCRLB)的快速雷达资源管理算法。首先,使用BLUE算法代替传统跟踪滤波算法,完成目标跟踪,并得到目标在直角坐标系下的状态估计;然后,快速计算得到PCRLB作为代价函数,形成雷达资源管理模型;最后,利用该模型对多目标进行波束和驻留时间的分配。仿真结果表明,该算法以BLUE方法进行跟踪滤波,避免了传统PCRLB计算中雅可比矩阵(Jacobian Matrix)的运算,在保持跟踪精度的同时大幅减少运算量;以两步资源管理算法完成对波束、驻留时间的联合管理,合理分配雷达资源。 In order to improve the real-time performance of phased array radar resource management,a fast radar resource management algorithm based on best linear unbiased estimation(BLUE)and posterior Cramer-Rao lower bound(PCRLB)is proposed.First,the target tracking is completed by using BLUE instead of the traditional tracking filtering algorithm,the target state estimation in the rectangular coordinate system is obtained.Then,a radar resource management model is established by quickly calculating PCRLB as a cost function.Finally,the model is used to allocate beams and dwell time for each target.Simulation results show that based on the BLUE tracking method,the calculation of Jacobian matrix in traditional PCRLB calculation is avoided,the amount of calculation is greatly reduced while a good tracking accuracy is maintained;based on a two-step algorithm,the joint management of beams and dwell time is completed,radar resources are rationally allocated.
作者 罗静 赵婵娟 方明 汤继伟 LUO Jing;ZHAO Chanjuan;FANG Ming;TANG Jiwei(Shanghai Aerospace Electronic Technology Institute,Shanghai 201109,China;Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109,China)
出处 《电讯技术》 北大核心 2021年第9期1117-1123,共7页 Telecommunication Engineering
关键词 相控阵雷达 雷达资源管理 多目标跟踪 BLUE算法 后验克拉美罗界(PCRLB) phased array radar radar resource management muti-targets tracking best linear unbiased estimation(BLUE)algorithm posterior Cramer-Rao lower bound(PCRLB)
  • 相关文献

参考文献4

二级参考文献27

  • 1段战胜,韩崇昭.极坐标系中带多普勒量测的雷达目标跟踪[J].系统仿真学报,2004,16(12):2860-2863. 被引量:11
  • 2周万幸,吴呜亚,胡明春.双(多)基地雷达系统[M].北京:电子工业出版社,2011:1-30.
  • 3Van Trees H L, Bell K L, and Wang Y. Bayesian Cramer-Rao bounds for multistatic radar[C]. Proceedings of the Waveform Diversity Design, Washington, 2006: 856-859.
  • 4Godrich H, Petropulu A, and Poor H V. Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 247-260.
  • 5Godrich H, Petropulu A, and Poor H V. Power allocation strategies for target localization in distributed multiple-radar architecture[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226-3240.
  • 6Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
  • 7Hero A O and Cochran D. Sensor management: past, present, and future[J]. IEEE Sensors Journal, 2011, 11(12): 3064- 3075.
  • 8Boyd S and Vandenberghe L. Convex Optimization[M]. Cambridge: UK, Cambridge University, 2004: 67-127.
  • 9Rao S S. Ei~gineering Optimization: Theory and Practice[M], 3rd Ed, New York: Wiley, 1996: 383-425.
  • 10Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[M]. Norwood, MA: Artech House, 2004: 1-82.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部