摘要
提出了基于智能算法的火力打击战法策略优化方法。该方法突破常规人工智能算法的神经网络和强化学习范式结构,利用智能体和种群的双层构造和对抗推演中的反馈评分实现智能体的智力提升,通过群体进化和复杂系统涌现达成战法策略的优化。实验结果表明:总体效果优于常规的遗传算法和对抗进化算法,设计思想能够迁移到诸多研究领域,具备应用性和扩展性。
This paper put forward an optimization method of firepower attack strategy based on intelligent algorithm.This method breaks through the neural network and reinforcement learning paradigm structure of conventional artificial intelligence algorithms,and makes use of the double-layer structure of agent and population and feedback score in adversarial deduction to improve the intelligence of agents,and tries to optimize the tactical strategy through swarm evolution and complex system emergence.The experimental results show that the proposed method achieves the complex evolution of task planning through the emergence effect,and the overall effect is better than the conventional genetic algorithm and adversarial evolutionary algorithm.The algorithm design idea in this paper can be transferred to many research fields and has certain application and expansibility.
作者
邢岩
刘昊
李保硕
XING Yan;LIU Hao;LI Baoshuo(School of Electronic Information Engineering, Shenyang Aerospace University, Shenyang 110000, China;National Defense University Joint Operations College, Shijiazhuang 050000, China;31696 Army General Staff, Jinzhou 121000, China)
出处
《兵器装备工程学报》
CSCD
北大核心
2021年第9期189-195,共7页
Journal of Ordnance Equipment Engineering
基金
沈阳航空航天大学引进人才科研启动基金项目(19YB48)。
关键词
联合火力打击
任务规划
多智能体
协同进化
智能决策
joint fire strike
mission planning
multi-agent
co-evolution
intelligent decision-making