期刊文献+

基于LBM-LES方法桨-涡干扰气动噪声直接计算

下载PDF
导出
摘要 文章在马赫数较低的条件下,采用基于LBM框架下的LES方法,对平行桨-涡干扰气动噪声进行了直接数值计算。使用D2Q9模型作为LBM格子的离散速度模型,同时使用动态Smagorinsky亚格子模型作为LES方法的亚格子模型。计算结果显示,大涡模拟方法能够较为准确地获取桨-涡干扰气动噪声的声场,并且能够对桨-涡干扰气动噪声的生成机理、传播规律及噪声特性进行分析;桨涡干扰噪声的直接计算,大涡模拟方法对近壁面区域可以用壁面函数近似,近场特别是声源区域内网格最为关键。 Under the condition of low Mach number,a direct computation for parallel blade-vortex interaction(BVI)aeroacoustic was performed by large eddy simulation(LES)method method in the framework of LBM.The D2Q9 model is used as the discrete velocity model of the LBM(Lattice Boltzmann Method),and the dynamic Smagorinsky subgrid model is used as the subgrid model of the LES method.The calculation results show that the large eddy simulation method can accurately obtain the sound field of blade-vortex interaction aerodynamic noise,and can analyze the generation mechanism,propagation law and characteristics of blade-vortex interaction aerodynamic noise,for the direct calculation of blade-vortex interaction noise,the LES method can be used to approximate the wall function near the wall,and the grid in the near field,especially in the sound source region,is the most critical.
作者 雷安鹏
出处 《科技创新与应用》 2021年第27期38-41,45,共5页 Technology Innovation and Application
关键词 大涡模拟 低马赫数 平行桨-涡干扰 气动噪声 直接数值计算 large eddy simulation(LES) low Mach number parallel blade-vortex interaction aerodynamic noise direct numerical calculation
  • 相关文献

参考文献3

二级参考文献106

  • 1Lighthill, M. J. On sound generated aerodynamically: I. general theory. Proc. R. Soc. Lond. A., 211(1107), 564-587 (1952).
  • 2Lighthill, M. J. On sound generated aerodynamically: II. turbulence as a source of sound. Proc. R. Soc. Lond. A., 211(1148), 1-32 (1954).
  • 3Ffowcs Williams, J. E. and Hawkings, D. L. Sound generated by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A., 264(1151), 321-342 (1969).
  • 4Tam, C. K. W. Computational aeroacoustics: issues and method. AIAA J., 33(10), 1788-1796(1995).
  • 5Tam, C. K. W. Advances in numerical boundary conditions for computational aeroacoustics. J. Comput. Acoust., 6(4), 377-402 (1998).
  • 6Tam, C. K. W. Computational aeroacoustics: an overview of computational challenges and applications. Int. J. Comput. Fluid Dyn., 18(6), 547-567 (2004).
  • 7Tam, C. K. W. Computational Aeroacoustics, A Wave Number Approach, Cambridge University Press, New York, 263-265 (2012).
  • 8Lele, S. K. Computational aeroacoustics: a review. 35th Aerospace Sciences Meeting and Exhibit, 97-0018, American Institute of Aeronautics and Astronautics, Reno (1997).
  • 9Li, X. D., Jiang, M., Gao, J. H., Lin, D. K., Liu, L., and Li, X. Y. Progress and prospective of computational aeroacoustics (in Chinese). Sci. China Phys. Mech., 44(3), 234-248 (2014).
  • 10Lele, S. K. Compact finite difference scheme with spectral-like resolution. J. Comput. Phys., 103(1), 16-42 (1992).

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部