期刊文献+

松散电接触对无源互调干扰的影响机理分析 被引量:3

Analysis of passive intermodulation distortion caused by loose electrical contact
原文传递
导出
摘要 抑制无源互调干扰是确保新一代移动通信系统安全、稳定和经济运行的重要前提,也是推进我国电信基础设施共建共享的重要保证,对无源互调干扰的产生机理进行分析是抑制其干扰产生的最根本性手段.本文综合性地阐述了金属松散电接触对无源互调干扰的影响机理,包括金属电接触表面的微观特征分析、松散电接触等效电路模型建立、松散电接触面电流密度和阻抗等电特征量对互调干扰作用机制等内容.理论建模、软件仿真以及实验测试表明:松散电接触导致增大的面电流密度与接触阻抗是产生无源互调干扰的直接原因. Suppressing passive intermodulation distortion is an important precondition to ensure the safety,stability, and economic operation of the mobile communication systems. It is also an important guarantee for promoting the co-construction and sharing of telecom infrastructure. The most fundamental approach to suppress the distortion is the study of mechanisms of passive intermodulation. In this paper, the mechanism of loose electrical contact is studied. First, the microcosmic characteristic of the metal surface is analyzed. Then, the electrical parameters such as impedance, current density in the loose contact surface are analyzed. Finally,the simulation and measurement are conducted. We conclude that the additional impedance and increased current density, which are caused by the loose electrical contact, are the direct factors for generating the passive intermodulation distortion.
作者 杨会平 黄为 曾碧卿 温和 Huiping YANG;Wei HUANG;Biqing ZENG;He WEN(School of Software,South China Normal University,Foshan 528225,China;ESDEMC Technology LLC,Rolla 65401,USA;College of Electrical and Information Engineering,Hunan University,Changsha 410012,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2021年第8期1316-1330,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61671203,61771190)资助项目。
关键词 无源互调干扰 松散电接触 同轴连接器 接触阻抗 新一代移动通信系统 passive intermodulation loose contact coaxial connectors contact impedance next-generation communication system
  • 相关文献

参考文献2

二级参考文献83

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献721

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部