摘要
目前局部通风机控制主要采用传统PID控制器,控制器的参数固定且多依据经验选取,很难实现隶属度函数和模糊规则的最优组合,使得控制器难以满足局部通风机自适应的控制要求。针对该问题,设计了一种改进遗传算法优化的矿井局部通风机模糊PID控制器。在改进遗传算法中引入欧氏距离提高种群的多样性,同时引入自适应交叉和变异概率来提高算法的收敛性。在编码过程中采用比例分数间接实现对隶属度函数的优化,使得改进遗传算法能够同时优化隶属度函数和模糊规则。将优化得到的隶属度函数和模糊规则导入模糊PID控制器中,控制器能够根据局部通风机的不同工作状态,通过变频器自适应调整局部通风机的风量,实现对局部通风机的动态调节。仿真结果表明,相较于传统模糊PID控制器,改进模糊PID控制器可基本实现无超调,且上升时间缩短了56.25%,稳定时间缩短了47.06%,能够更好地满足矿井局部通风机的控制要求。
At present,the local ventilator control mainly uses traditional PID controllers.The parameters of the controller are fixed and selected based on experience.It is difficult to achieve the optimal combination of membership functions and fuzzy rules,which makes it difficult for the controller to meet the adaptive control requirements of local ventilator.In order to solve this problem,a fuzzy PID controller for mine local ventilator optimized by improved genetic algorithm is designed.In the improved genetic algorithm,the Euclidean distance is introduced to increase the diversity of the population,and the adaptive crossover and mutation probability are introduced to improve the convergence of the algorithm.In the encoding process,the proportional fraction is used to indirectly optimize the membership functions,which enables the improved genetic algorithm to optimize both the membership functions and fuzzy rules.The optimized membership functions and fuzzy rules are imported into the fuzzy PID controller.The controller can adaptively adjust the air volume of the local ventilator through the inverter according to the different working status of the local ventilator so as to realize the dynamic adjustment of the local ventilator.The simulation results show that compared with the traditional fuzzy PID controller,the improved fuzzy PID controller can basically achieve no overshoot,the rise time is shortened by 56.25%,and the stabilization time is shortened by 47.06%,which can better meet the control requirements of mine local ventilator.
作者
胡业林
邓想
郑晓亮
HU Yelin;DENG Xiang;ZHENG Xiaoliang(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China)
出处
《工矿自动化》
北大核心
2021年第9期38-44,共7页
Journal Of Mine Automation
基金
“十三五”国家重点研发计划项目(2018YFC0808000)。