期刊文献+

On Blow-up of Regular Solutions to the Isentropic Euler and Euler-Boltzmann Equations with Vacuum

原文传递
导出
摘要 In this paper,the authors study the Cauchy problem of n-dimensional isentropic Euler equations and Euler-Boltzmann equations with vacuum in the whole space.They show that if the initial velocity satisfies some condition on the integral J in the"isolated mass group"(see(1.13)),then there will be finite time blow-up of regular solutions to the Euler system with J≤0(n≥1)and to the Euler-Boltzmann system with J<0(n≥1)and J=0(n≥2),no matter how small and smooth the initial data are.It is worth mentioning that these blow-up results imply the following:The radiation is not strong enough to prevent the formation of singularities caused by the appearance of vacuum,with the only possible exception in the case J=0 and n=1 since the radiation behaves differently on this occasion.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2021年第4期495-510,共16页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11831011,11571232) China Scholarship Council(No.201806230126)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部