期刊文献+

Convergence to a self-normalized G-Brownian motion 被引量:1

原文传递
导出
摘要 G-Brownian motion has a very rich and interesting new structure that nontrivially generalizes the classical Brownian motion.Its quadratic variation process is also a continuous process with independent and stationary increments.We prove a self-normalized functional central limit theorem for independent and identically distributed random variables under the sub-linear expectation with the limit process being a G-Brownian motion self-normalized by its quadratic variation.To prove the self-normalized central limit theorem,we also establish a new Donsker’s invariance principle with the limit process being a generalized G-Brownian motion.
出处 《Probability, Uncertainty and Quantitative Risk》 2017年第1期87-111,共25页 概率、不确定性与定量风险(英文)
基金 Research supported by Grants from the National Natural Science Foundation of China(No.11225104) the 973 Program(No.2015CB352302)and the Fundamental Research Funds for the Central Universities.
  • 相关文献

二级参考文献9

共引文献90

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部