期刊文献+

基于传递熵关键因果连接的情感识别方法 被引量:4

Emotion recognition method based on key causal connection of transfer entropy
下载PDF
导出
摘要 人脑在情绪活动中呈现的信息流是复杂多变的,因此理解脑区间的动态交互过程至关重要,但是基于原始脑电信号构建的情绪网络包含了许多与情绪无关的冗余信息。针对此问题,提出一种在不丢失关键因果信息的前提下去除情绪无关网络连接的方法,并验证其在情感识别过程中的有效性。首先,基于传递熵因果分析方法对积极、中性和消极情绪构建归一化传递熵矩阵,再从积极、消极情绪矩阵中减去中性情绪矩阵,最后基于简化后的矩阵构建因效性脑网络并利用图论分析不同情绪的网络连通性。通过在DEAP数据集上的验证发现,该方法有效地提高了情感识别准确率。 The information flow presented by human brain in emotional activities is complex and changeable,so it is crucial to understand the dynamic interaction process of brain regions.However,using raw EEG signals to build emotional networks contains a lot of redundant information that has nothing to do with emotions.To solve this problem,this paper proposed a method to remove emotionally irrelevant network connections without losing key causal information,and verified its effectiveness in the process of emotion recognition.Firstly,this method used the transfer entropy causality analysis method to construct the norma-lized transfer entropy(NTE)matrix for positive,neutral,and negative emotions,and then subtracted the neutral emotion matrix from the matrix of positive and negative emotions.Finally,it used the simplified matrix to construct an effective brain network and used graph theory to analyze the network connectivity of different emotions.Through the verification on DEAP dataset,it is found that this method can effectively improve the accuracy of emotion recognition.
作者 王忠民 蔡兰兰 范琳 Wang Zhongmin;Cai Lanlan;Fan Lin(School of Computer Science&Technology,Xi’an University of Posts&Telecommunications,Xi’an 710121,China;Shaanxi Key Laboratory of Network Data Analysis&Intelligent Processing,Xi’an University of Posts&Telecommunications,Xi’an 710121,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第9期2614-2618,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61373116) 陕西省工业领域一般项目(2018GY-013) 陕西省教育厅资助项目(18JK0697) 咸阳市科技局资助项目(2017k01-25-2)。
关键词 脑电信号 脑网络 传递熵 因果信息 情感识别 EEG signal brain network transfer entropy causal information emotion recognition
  • 相关文献

参考文献7

二级参考文献134

  • 1毛勇,皮道映,刘育明,孙优贤.Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification[J].Chinese Journal of Chemical Engineering,2006,14(1):65-72. 被引量:4
  • 2Cammoun L, Gigandet X, Sporns O, et al. Connectome alterations in schizophrenia. Neurolmage, 2009, 47:S157.
  • 3Vaessen M J, Jansen J F, Hofman P A, et al. Impaired small-world structural brain networks in chronic epilepsy. Neurolmage, 2009, 47: S113.
  • 4Friston K J, Frith C D, Liddle P F, et al. Functional connectivity: The principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993, 13:5-14.
  • 5Stam C J. From synchronization to networks: Assessment of functional connectivity in the brain. In: Perez Velazquez J L, Richard W, eds. Coordinated Activity in the Brain, vol 2. Berlin Heidelberg: Springer-Verlag, 2009.91-115.
  • 6Stephan, Hilgetag K E, Burns C C, et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci, 2000, 355:111-126.
  • 7Micheloyannis S, Pachou S, Stam C J, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett, 2006, 402:273-277.
  • 8Micheloyannis S, Vourkas S, Tsirka M, et al. The influence of ageing on complex brain networks: A graph theoretical analysis. Hum Brain Mapp, 2009, 30:200-208.
  • 9Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol, 2007, 118:449-456.
  • 10Dimitriadis S I, Laskaris N A, Del Rio-Portilla Y, et al. Characterizing dynamic functional connectivity across sleep stages from EEG. Brain Topogr, 2009, 22:119-133.

共引文献197

同被引文献69

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部