期刊文献+

引入生态扩张主义的改进生物地理学优化算法 被引量:1

Improved BBO algorithms based on ecological imperialism
下载PDF
导出
摘要 针对生物地理学优化算法(biogeography-based optimization,BBO)前期搜寻范围不足、后期易陷入局部最优等问题,提出一种引入生态扩张主义(ecological imperialism,EI)的改进生物地理学优化算法(EI-BBO)。首先,该算法通过在原始栖息地的周围寻找新栖息地,增强了初始化群体的多样性;其次,通过对栖息地进行改良式扩张,提高了算法后期的收敛效率;最后,通过梯度下降对最优解领域进行二次收敛,提高了算法的收敛精度。在CEC2014常用的12个优化测试函数上进行50次蒙特卡罗实验,结果表明无论是最优适应度值、平均适应度值还是标准差值EI-BBO,该算法总体表现均优于其他三种智能优化算法,说明EI-BBO能够提高寻找最优解的能力并提升搜索稳定性。 In order to solve the problems of BBO such as insufficient search scope in the early stage and easy to fall into local optimization in the later stage,this paper proposed an improved EI-BBO which based on EI.Firstly,the algorithm searched for new habitat around the original habitat,it enhanced the diversity of the initialization population.Secondly,the algorithm made improved habitat expansion,it improved the convergence efficiency of the algorithm.Finally,the algorithm used gradient descent to make quadratic convergence in the field of optimal solution,which improved the convergence accuracy of the algorithm.This paper carried out 50 Monte Carlo experiments on 12 optimized test functions commonly used in CEC2014,the experimental results show that the overall performance of EI-BBO is better than the other three intelligent optimization algorithms in terms of optimal fitness value,average fitness value and standard deviation.It shows that EI-BBO can improve the ability to find the optimal solution and enhance the search stability.
作者 张永贤 陈杨谨瑜 邰万文 李伟 Zhang Yongxian;Chen Yangjinyu;Tai Wanwen;Li Wei(College of Electrical&Automation Engineering,East China Jiaotong University,Nanchang 330052,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第9期2696-2700,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61763012)。
关键词 生物地理学优化算法 生态扩张主义 最优化 群体智能 biogeography-based optimization ecological imperialism optimization swarm intelligence
  • 相关文献

参考文献8

二级参考文献68

  • 1马海平,李雪,林升东.生物地理学优化算法的迁移率模型分析[J].东南大学学报(自然科学版),2009,39(S1):16-21. 被引量:47
  • 2GIANG Z. Particle swarm optimization to solving theeconomic dispatch considering the generatorconstraints[J]. IEEE Trans on Power Systems, 2003,18(3): 1187-1195.
  • 3ATTAVIRIYANUPAP P, KITA H, TANAKA E, et al. Ahybrid EP and SQP for dynamic economic dispatch withnonsmooth fuel cost function[J]. IEEE Trans on PowerSystems, 2002, 17(2): 411-416.
  • 4BASKAR S, SUBBARAJ P, RAO M. Hybrid real codedgenetic algorithm solution to economic dispatchproblem[J]. Computer Electric Eng, 2003, 29(3):407-419.
  • 5CHIANG C. Improved genetic algorithm for powereconomic dispatch of units with valve-point effects andmultiple fuels[J]. IEEE Trans on Power Systems, 2005,20(4): 1690-1699.
  • 6WON J, PARK Y. Economic dispatch solutions withpiecewise quadratic cost functions using improvedgenetic algorithm[J]. Electric Power Energy Systems,2003, 25(5): 355-361.
  • 7JAYABARATHI T, JAYAPRAKASH K, JEYAKUMARD. Evolutionary programming techniques for differentkinds of economic dispatch problems[J]. Elect PowerSyst Res, 2005, 73(2): 169-176.
  • 8SOMASUNDARAM P, KUPPUSAMY K. Application ofevolutionary programming to security constrainedeconomic dispatch[J]. Elect Power Energy Syst, 2005,27(5): 343-351.
  • 9SINHA N, CHAKRABARTI R, CHATTOPADHYAY P.Evolutionary programming technique for economic loaddispatch[J]. IEEE Trans Evol Comput, 2003, 7(1): 83-94.
  • 10CAI J, MA X, LI L. Chaotic particle swarm optimizationfor economic dispatch considering the generatorconstraints[J]. Energy Conversion Manage, 2007, 48(2):645-653.

共引文献79

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部