期刊文献+

一种基于决策导向图的通信信号调制识别方法

A Modulation Recognition Method of Communication Signal based on Decision Directed Graph
下载PDF
导出
摘要 通信信号调制识别在监测系统中具有重要作用,可为后续任务提供参数依据和情报支撑。识别信号的调制样式,是实现信号正确接收解调的前提。针对调制样式识别问题,提出了一种采用决策导向图结合小波变换的方法,更好地完成了信号分类识别。在分类思路方面,引入判决树结构进行分析,并采取决策导向图对支持向量机分类器实现扩展优化,进一步提高了抗噪性能。该方法稳健性好,便于工程实现,并通过仿真试验验证了其识别结果的有效性,识别正确率高且性能较优。 Modulation recognition of communication signal plays an important role in the monitoring system,which can provide parameter basis and information support for subsequent tasks.Identifying the modulation pattern of the signal is the premise to realize the correct reception and demodulation of the signal.Aiming at the problem of modulation pattern recognition,a method using decision oriented graph combined with wavelet transform is proposed to better complete signal classification and recognition.In terms of classification ideas,the decision tree structure is introduced for analysis,and the decision directed graph is used to expand and optimize the support vector machine classifier,which further improves the anti-noise performance.This method has good robustness and is convenient for engineering implementation.Finally,the effectiveness of the recognition results is verified by simulation experiments,and the recognition accuracy is high and the performance is fairly good.
作者 范文俊 王婷 FAN Wenjun;WANG Ting(Information Engineering University of Strategic Support Force,Luoyang Henan 471003,China;Unit 61212 of PLA,Beijing 100091,China)
出处 《通信技术》 2021年第9期2114-2118,共5页 Communications Technology
关键词 调制识别 特征提取 小波变换 决策导向图 modulation recognition feature extraction wavelet transform decision directed graph
  • 相关文献

参考文献1

二级参考文献46

  • 1王建新,宋辉.基于星座图的数字调制方式识别[J].通信学报,2004,25(6):166-173. 被引量:56
  • 2冯祥,李建东.调制识别算法及性能分析[J].电波科学学报,2005,20(6):737-740. 被引量:14
  • 3高玉龙,张中兆.基于循环谱的同信道多信号调制方式识别[J].高技术通讯,2007,17(8):793-797. 被引量:18
  • 4Weaver C S, Cole C A, Krumland R B, et al. The auto- matic classification of modulation types by pattern recog-nition. California:Stanford University, 1969.
  • 5Nandi A K, Azzouz E E. Algorithms for automatic modu- lation recognition of communication signals. IEEE Trans- actions on Communications, 1998, 46 (4) : 431-436.
  • 6Swami A, Sadler B M. Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 2000, 48 ( 3 ) : 416-429.
  • 7Sanderson J, Li X, Liu Z, et al. Hierarchical blind mod- ulation classification for underwater acoustic communica- tion signal via cyclostationary and maximal likelihood analysis. In: Proceedings of the Military Communications Conference, San Diego, USA, 2013. 29-34.
  • 8Like E, Chakravarthy V D, Ratazzi P, et al. Signal clas- sification in fading channels using cyclic spectral analy- sis. EURASIP Journal on Wireless Communications and Networking, 2009 : 14.
  • 9Dobre 0 A, Abdi A, Bar-Ness Y, et al. Survey of auto- matic modulation classification techniques: classical ap- proaches and new trends. Communications, IET, 2007, 1 (2) : 137-156.
  • 10Shi Q, Gong Y, Guan Y L. Modulation classification for asynchronous high-order QAM signals. Wireless Commu- nications and Mobile Computing, 2011, 11 (10) : 1415- 1422.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部