期刊文献+

G-Lévy processes under sublinear expectations 被引量:3

原文传递
导出
摘要 We introduce G-Lévy processes which develop the theory of processes with independent and stationary increments under the framework of sublinear expectations.We then obtain the Lévy-Khintchine formula and the existence for G-Lévy processes.We also introduce G-Poisson processes.
出处 《Probability, Uncertainty and Quantitative Risk》 2021年第1期1-22,共22页 概率、不确定性与定量风险(英文)
基金 This work was supported by National Key R&D Program of China(Grant No.2018YFA0703900) National Natural Science Foundation of China(Grant No.11671231) Tian Yuan Fund of the National Natural Science Foundation of China(Grant Nos.11526205 and 11626247) National Basic Research Program of China(973 Program)(Grant No.2007CB814900).
  • 相关文献

参考文献4

二级参考文献49

  • 1LI Min & SHI YuFeng School of Mathematics,Shandong University,Jinan 250100,China.A general central limit theorem under sublinear expectations[J].Science China Mathematics,2010,53(8):1989-1994. 被引量:16
  • 2ShigePeng.Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims[J].Acta Mathematicae Applicatae Sinica,2004,20(2):191-214. 被引量:19
  • 3PENG Shige.NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS[J].Chinese Annals of Mathematics,Series B,2005,26(2):159-184. 被引量:31
  • 4Allais, M., La psychologie de l'home rationnel devant le risque: critique des postulats et axiomes de l'cole Amricaine, Econometrica, 21:4(1953), 503-546. Translated and reprinted in Allais and Hagen,1979.
  • 5Artzner, P., Delbaen, F., Eber, J. M. & Heath, D., Coherent measures of risk, Math. Finance, 9(1999),203-228.
  • 6Barrieu, P. & El Karoui, N., Optimal derivatives design under dynamic risk measures, Contemp. Math.,Amer. Math. Soc., 315(2004), 13-25.
  • 7Bensoussan, A., Stochastic Control by Functional Analysis Methods, North-Holland, 1982.
  • 8Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectations, Electron. Comm. Probab, 5(2000), 26.
  • 9Chen, Z., A property of backward stochastic differential equations, C. R. Acad. Sci. Paris, Ser. I Math., 326:4(1998), 483-488.
  • 10Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica,70:4(2002), 1403-1443.

共引文献90

同被引文献9

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部