期刊文献+

The term structure of Sharpe ratios and arbitragefree asset pricing in continuous time

原文传递
导出
摘要 Motivated by financial and empirical arguments and in order to introduce a more flexible methodology of pricing,we provide a new approach to asset pricing based on Backward Volterra equations.The approach relies on an arbitrage-free and incomplete market setting in continuous time by choosing non-unique pricing measures depending either on the time of evaluation or on the maturity of payoffs.We show that in the latter case the dynamics can be captured by a time-delayed backward stochastic Volterra integral equation here introduced which,to the best of our knowledge,has not yet been studied.We then prove an existence and uniqueness result for time-delayed backward stochastic Volterra integral equations.Finally,we present a Lucas-type consumption-based asset pricing model that justifies the emergence of stochastic discount factors matching the term structure of Sharpe ratios.
出处 《Probability, Uncertainty and Quantitative Risk》 2021年第1期23-52,共30页 概率、不确定性与定量风险(英文)
  • 相关文献

参考文献1

二级参考文献30

  • 1A. Aman and M. N'Zi. Backward stochastic nonlinear integral equation with local Lipschitz drift, Probab Math Statist, 2005, 25: 105-127.
  • 2V. Anh and J. Yong. Backward stochastic Volte~ra integral equations in Hilbert space, Differential Difference Equations Appl, Hindawi, New York, 2006, 57-66.
  • 3F. Antonelli. Backward-forward stochastic differential equations, Ann Appl Probab, 1993, 3: 777- 793.
  • 4M. Berger and V. Mizel. VoIterra equation with It5 integrals, I, II, J Intergal Equations, 1980, 2: 187-245, and 319-337.
  • 5J. M. Bismut. Th@orie Probabiliste du Contr51e des Diffusions, Mere Amer Math Soc, 176, Provi- dence, Rhode Island, 1973.
  • 6V. G. Boltyanskii, R. V. Gamkrelidze, and L. S. Pontryagin. On the theory of optimal processes, Dokl Akad Nauk SSSR (N.S.), 1956, 110:7-10 (in Russian).
  • 7Ph. Briand, B. Delyon, Y. Hu, E. Pardoux, and L. Stoica. Lp solutions of backward stochastic differential equations, Stochastic Process Appl, 2003, 108: 109-129.
  • 8D. Duffie and L. Epstein. Stochastic differential utility, Econometrica, 1992, 60: 353-394.
  • 9D. Duffle and C. F. Huang. Stochastic production-exchange equilibria, Research paper No. 974 Graduate School of Business, Stanford Univ, 1986.
  • 10N. E1 Karoui, S. Peng, and M. C. Quenez. backward stochastic differential equations in finance, Math Finance, 1997, 7: 1-71.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部