摘要
该文针对模式崩溃的问题,从多生成器博弈强迫每个生成器生成不同模式数据的思路出发,提出了一种基于多生成器的生成对抗网络(IMGAN)。IMGAN在多个生成器之间采用参数共享的方式来加速训练,同时采用最后一层独立训练的方式来弱化参数同一性所带来的影响;引入一个正则惩罚项使得损失函数可以更好地满足Lipschitz连续,一定程度上避免了梯度消失带来的影响;引入一个超参数来解决多重损失函数带来的差异性问题,避免过度偏向其中某一种梯度方向。最后,通过在多个数据集上的对比实验验证了该文模型的表现和性能。
Aiming at the problem of pattern collapse,this paper starts from the idea of forcing each generator to generate different pattern data in a multi-generator game,and proposes a multi-generator-based generation confrontation network,named improved multi-generator generative adversarial nets(IMGAN).IMGAN uses parameter sharing between multiple generators to speed up training,and at the same time uses the last layer of independent training to weaken the impact of parameter identity;introduces a regular penalty term to make the loss function better satisfy Lipschitz continuousness,which avoids the effect of gradient disappearance to a certain extent;and introduces a hyperparameter to solve the disparity problem caused by multiple loss functions and avoid excessive bias toward one of the gradient directions.At last,we verify the performance of our model through comparative experiments on multiple data sets.
作者
李响
严毅
刘明辉
刘明
LI Xiang;YAN Yi;LIU Minghui;LIU Ming(School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054)
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2021年第5期754-760,共7页
Journal of University of Electronic Science and Technology of China
关键词
深度神经网络
生成对抗网络
模式崩溃
多生成器
deep neural network
generative adversarial network
mode collapse
multiple generators