期刊文献+

基于广义欧拉商二元序列线性复杂度研究

Linear complexity of binary sequences derived from generalized Euler quotients
下载PDF
导出
摘要 文章给出了广义欧拉商的定义,讨论了广义欧拉商的若干性质,并利用广义欧拉商构造一类伪随机二元序列,通过线性递推关系确定了序列p(奇素数)模4情况下的线性复杂度大于周期的1/2,尤其在p(奇素数)模4余3的情形下,线性复杂度仅仅比周期少1。 In this paper,the definition of generalized Euler quotient is given,and some properties of generalized Euler quotient are discussed.A class of pseudorandom binary sequences is constructed by using generalized Euler quotients.The linear complexity of the sequences,in the case of odd prime p≡1 or 3(mod 4),is more than half of the period;especially,in the case of p≡3(mod 4),the linear complexity is only 1 less than the period.
作者 姚晓艳 李富林 YAO Xiaoyan;LI Fulin(School of Mathematics,Hefei University of Technology,Hefei 230601,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第9期1287-1290,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61772168)。
关键词 流密码 伪随机序列 广义欧拉商 线性复杂度 stream cipher pseudorandom sequence generalized Euler quotient linear complexity
  • 相关文献

参考文献2

二级参考文献6

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部