期刊文献+

认知车联网频谱分配的免疫优化实现 被引量:1

Immune Optimization Based on Spectrum Allocation of Cognitive Vehicular Network
下载PDF
导出
摘要 为了满足车联网日益增长的频谱需求,对车联网的频谱资源分配问题进行研究。在车联网中引入认知无线电技术形成了认知车联网。将车联网用户看作认知节点,考虑授权用户的移动性、多认知用户之间的干扰等因素影响,对其进行建模。基于图着色模型,将其建模为最大化认知节点吞吐量的优化问题,进而提出一种基于免疫优化的求解算法。设计了适合频谱分配问题的矩阵编码方式、抗体修正方式、比例克隆等策略,保证算法的寻优能力。仿真实验表明:所提算法能获得较高的认知节点吞吐量,适合于认知车联网的频谱分配。 In order to meet the increasing spectrum demands of cognitive vehicular network,spectrum allocation problem is studied.Cognitive vehicle network is the formulation of cognitive radio technology into vehicle network.For the problem of cognitive vehicle network spectrum allocation,which is modeled to optimize the throughput of cognitive nodes,an immune optimization algorithm based on graph theory model is proposed.To ensure the optimization of algorithm,it concludes matrix-coding scheme,antibody correction mode,and proportion of cloning.The simulation results show that the proposed algorithm can obtain high cognitive node throughput and is suitable for the spectrum allocation of cognitive vehicle network.
作者 马歌 贾遂民 MA Ge;JIA Suimin(College of Information Science&Technology,Zhengzhou Normal University,Zhengzhou 450044,China)
出处 《郑州大学学报(工学版)》 CAS 北大核心 2021年第5期62-67,共6页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(61572447)。
关键词 认知车联网 频谱分配 免疫优化 吞吐量 cognitive vehicle network spectrum allocation immune optimization throughput capacity
  • 相关文献

参考文献3

二级参考文献20

  • 1A.J. Ghandour, K. Fawaz, and H. Artail, Data delivery guarantees in congested vehicular ad hoc networks using cognitive networks, Proceedings of IEEE IWCMC, pp.871-876,2011.
  • 2Di Felice, M., et al., Analyzing the Potential of Cooperative Cognitive Radio Technology on In- ter-Vehicle Communication, 2010 IFIP Wireless Days, 2010:1-6.
  • 3Xiao Yu Wang, Pin-Han Ho, A Novel Sensing Coordination Framework for CR-VANETs, IEEE Transactions on Vehicular Technology, 2010. 59(4): 1936 - 1948.
  • 410Haobing Wang, Lin Gao, etc, Cooperative Spectrum Sharing in Cognitive Radio Networks: A Game-Theoretic Approach, IEEE International Conference on Communications (ICC), 2010:1- 5.
  • 511Ghandour, Ali J., Fawaz Kassem, etc, Fuzzy Cognitive Vehicular Ad hoc Networks, International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2011:9-16.
  • 6H.Li and D.K.Irick, Collaborative spectrum sensing in cognitive radio vehicular ad hoc networks: Belief propagation on highway, inProc. IEEE VNC, 2009, pp.1-8.
  • 7NIYATO D, HOSSAIN E, WANG R Optimal chan- nel access man-agement with QoS support for cognitive vehicular networks[J]. IEEE Transac- tions on Mobile Computing, 2011, 10(5):573- 591.
  • 8Z.Han, Z.Ji, and K.J.R.Liu, Non-Cooperative Re- source Competition Game by Virtual Referee in Multi-Cell OFDMA Networks, IEEE Journal on Selected Areas in Commun., vol.25, no.6,pp.1079-1090, August 2007.
  • 9Z. Han, Z. Ji, and K. J. R. Liu, Fair Multiuser Channel Allocation for OFDMA Networks Using Nash Bargaining Solutions and Coalitions, IEEE Transactions on Communications, vol.53, no.8, pp.1366-1376,.
  • 10August 2005. Ephraim Zehavi, Amir Leshem, Alternative Bar- gaining Solutions for the interference Channel, [EEE international Workshop on CAMSAP, pp.9- 12, 2009.

共引文献26

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部