摘要
该文提出一种基于变分模态分解(VMD)和Park变换的交流变频电机早期转子断条故障识别方法。重点对低速状态下电机早期断条故障特征频率识别展开研究,基于电流信号特点结合萤火虫优化算法(FA)设定变分模态分解参数,进一步强化其自适应分解能力,并在此基础上获取三相电流的基频分量信息,通过Park变换检测早期故障特征。仿真与实验结果表明,该方法检测电机早期转子断条故障特征优于经验模态分解(EMD)方法,并可实现故障特征频率的早期定位,这对电机的故障辨识和预警具有重要支撑意义。
This paper presents a novel detection method for broken rotor bar fault in variable frequency AC motor based on variational mode decomposition(VMD)and Park transformation.The identification method of the fault characteristic frequency under the low-speed state was further studied.Combined with the characteristics of current signals and the firefly algorithm(FA),the adaptive decomposition ability of VMD was strengthened.On this basis,the supply frequency components of the three-phase current were extracted and the fault features were detected through Park transformation.Finally,simulation and experimental results show that the proposed method is superior to the empirical mode decomposition(EMD)for detecting early fault features and can realize the identification of the early fault frequencies,which is a great significance for the early fault detection and forecast of the variable frequency AC motor.
作者
李睿彧
刘飞
梁霖
罗爱玲
徐光华
Li Ruiyu;Liu Fei;Liang Lin;Luo Ailing;Xu Guanghua(School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an,710049,China;Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System,Xi’an Jiaotong University,Xi’an,710049,China;State Key Laboratory for Manufacturing Systems Engineering,Xi’an Jiaotong University,Xi’an,710054,China)
出处
《电工技术学报》
EI
CSCD
北大核心
2021年第18期3922-3933,共12页
Transactions of China Electrotechnical Society
基金
国家重点研发计划项目(2018YFB2000202)
国家自然科学基金项目(51775423)
中国博士后科学基金特别项目(2018T111046)
中国博士后科学基金项目(2017M623159)
陕西省博士后科学基金项目(2017BSHEDZZ68)
西安交通大学基本科研业务费(XJJ2018047)资助。
关键词
交流变频电机
转子断条故障
变分模态分解
萤火虫优化算法
PARK变换
Variable frequency AC motor
broken rotor bars
variational mode decomposition(VMD)
firefly algorithm(FA)
Park transformation