期刊文献+

基于势均衡多伯努利滤波的SLAM方法

SLAM Method Based on Cardinality Balanced Multi-Bernoulli Filter
下载PDF
导出
摘要 针对传统的EKF-SLAM、FastSLAM等方法存在着复杂度高、需要进行数据关联、计算量大不足等问题,提出了一种基于势均衡多伯努利滤波的SLAM(Cardinality Balanced Multi-Bernoulli-SLAM,CBMBer-SLAM)算法,该方法是一种基于随机有限集理论的滤波方法,将势均衡多伯努利滤波方法运用到地图特征估计中,克服了复杂的数据关联和地图特征点数目估计过多的问题,从而提高地图估计的整体精度,是一种用来解决水下SLAM问题比较好的新方法。通过仿真实验,将所提算法与RB-PHD-SLAM算法进行比较,仿真结果表明该算法可以有效提高地图特征估计精度。 Aiming at the shortcomings of traditional EKF-SLAM and FastSLAM methods,such as high complexity,data association and large amount of computation,a SLAM algorithm based on cardinality balanced multi-Bernoulli filter is proposed in this paper.This method applies the cardinality balanced multi-Bernoulli filtering to map feature estimation,which overcomes the problem of complex data association and excessive estimation of map feature points.Therefore,the overall accuracy of the map estimation is improved,and it is a new method for solving the underwater SLAM problem.Through simulation experiments,the proposed algorithm is compared with PHD-SLAM algorithm.The results show that the proposed algorithm can effectively improve the accuracy of map feature estimation.
作者 李宁 章飞 LI Ning;ZHANG Fei(Jiangsu University of Science and Technology,Zhenjiang 212003)
机构地区 江苏科技大学
出处 《计算机与数字工程》 2021年第9期1823-1828,共6页 Computer & Digital Engineering
关键词 同步定位与地图构建 随机有限集 数据关联 势均衡多伯努利滤波 SLAM random finite sets data association cardinality balanced multi-Bernoulli filter
  • 相关文献

参考文献4

二级参考文献39

  • 1高怡,高社生,吴佳鹏.衰减记忆平方根UPF算法及其在组合导航中的应用[J].中国惯性技术学报,2014,12(6):777-781. 被引量:4
  • 2陈杨钟,刘士荣,俞金寿.基于非线性滤波的移动机器人位姿估计[J].华东理工大学学报(自然科学版),2007,33(4):558-563. 被引量:1
  • 3Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping (SLAM) : Part I [ J ]. IEEE Robotics and Automation Magazine, 2006,13(2) :99-110.
  • 4Durrant-Whyte H, Rye D, Nebot E. Localization of autonomous guided vehicles[ M ]. New York : Spfinger-Verlag, 1995:613-625.
  • 5Smith R C,Self M,Cheeseman P. Estimating uncertain spatial rela-tionships in robotics [ M ]. New York, Springer-Verlag, 1990.
  • 6Guivant J E,Nebot E M. Optimization of the simultaneous localiza-tion and map-building algorithm for real-time implementation[ J].IEEE Trans on Robotics and Automation,2001,17(3) :242-257.
  • 7Guivant J,Nebot E. Compressed filter for realtime implementationof simultaneous localization and map building [ C ]. Int Conf onField and Service Robots. 2001 :309-314.
  • 8Siadat A,Kaske A,Klausmann S,et al. An optimized segmentationmethod for a 2d laserscanner applied to mobile robot navigation[C].3rd IFAC Symp on Intelligent Components and Instrumentsfor Control Applications. 1997 : 153-158.
  • 9DURRANT W H,BAILEY T.Simultaneous localization and mapping:part Ⅰ[J].IEEE Robotics and Automation Magazine,2006,13(2):99-110.
  • 10DURRANT W H,BAILEY T.Simultaneous localization and mapping:part Ⅱ[J].IEEE Robotics and Automation Magazine,2006,13(3):108-117.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部