期刊文献+

可德兰多糖-阿魏酸接枝共聚物的制备工艺优化 被引量:1

Synthetic Optimization of Ferulic Acid/Curdlan Graft Copolymers
下载PDF
导出
摘要 采用自由基介导的接枝方法制备可德兰多糖-阿魏酸(FA)接枝共聚物,通过单因素试验考察FA添加量、维生素C(Vc)添加量、过氧化氢(H_(2)O_(2))浓度和反应时间对接枝率和得率的影响,在此基础上,利用正交试验设计进一步优化接枝共聚物的制备工艺参数。研究表明,可德兰多糖-阿魏酸接枝共聚物制备的最佳工艺条件为:25 mL 5 mg/mL可德兰多糖溶液,FA和Vc添加量分别为250 mg和50 mg,H_(2)O_(2)浓度5 mol/L,反应时间12 h,此时,可德兰多糖-FA接枝共聚物的接枝率和得率均最大,分别为98.62 mg FA/g和40.84%,并通过紫外和红外光谱验证了接枝反应的发生。因此,该方法不仅改善了可德兰多糖的理化特性,而且能够提高可德兰多糖-FA接枝共聚物的接枝率,为其在食品工业中的应用奠定了理论基础。 A free-radical-mediated grafting method was used to prepare ferulic acid(FA)/curdlan graft copolymers.The effects of FA and vitamin C(Vc)addition,hydrogen peroxide(H_(2)O_(2))concentration,and reaction time on the grafting ratio and yield of FA/curdlan graft copolymers were investigated using single factor experiments.Accordingly,the synthetic parameters of FA/curdlan graft copolymers were further optimized through orthogonal experiments.The results demonstrated that the optimal process conditions for the preparation of FA/curdlan graft copolymers included 25 mL of 5 mg/mL curdlan solution,250 mg of FA,50 mg of Vc,5 mol/L H_(2)O_(2),and a reaction time of 12 h.Under these conditions,the highest grafting rate and yield of the FA/curdlan graft copolymers of 98.62 mg FA/g and 40.84%,respectively,were obtained.Grafting was also confirmed by ultraviolet and infrared spectroscopy analyses.Therefore,the proposed preparation technique not only improved the physicochemical properties of curdlan,but also increased the grafting ratio of the graft copolymers.The findings of this study provide a theoretical foundation for the practical applications of curdlan in food industry.
作者 王紫薇 蔡吴丹 闫景坤 WANG Zi-wei;CAI Wu-dan;YAN Jing-kun(School of Food and Biological Engineering,Jiangsu University,Zhenjiang 212013,China)
出处 《现代食品科技》 CAS 北大核心 2021年第9期179-185,85,共8页 Modern Food Science and Technology
基金 国家自然科学基金面上项目(31671812)。
关键词 可德兰多糖 阿魏酸 自由基介导 接枝共聚 curdlan ferulic acid free radical-mediated grafting
  • 相关文献

参考文献2

二级参考文献39

  • 1Harada T, Masada M, Fujimori K and Meada I. Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10C3[J]. Agric Biol Chem, 1966,30:196-198.
  • 2Ogawa K, Tsurugi J, Watanabe T, et al. Conformational behavior of a gel formation (1 → 3)- β -D-glucans in alkaline solution[J]. Carbohydr Res, 1972, 23:399-405.
  • 3Salto H, Ohki T, Sasaki T. A 13C Nuclear Magnetic Resonance Study of Gel-Forming (1,3)- β -D-Glucans. Evidence of the presence of single-helical conformation in a resilient gel of a curdlan-type polysaccharide 13140 from Alcaligenes faealis var[J]. myxogenes IFO 13140[J]. Biochem, 1977, 16:908-914.
  • 4Stipanovic A J, Giammatteo P J. Curdlan and scleroglucan:NMR characterization of solution and gel properties[J]. In Polymers in Aqueous Media, Edward Glass, J, Eds., 1989, 73-87.
  • 5Nakata M, Kawaguchi T, Kodama Y and Konno A. Characterization of curdlan in aqueous sodium hydroxide[J]. Polymer,1998, 39:1475-1481.
  • 6Watase M, Nishinari K, Clark A H et al. DSC, rheology, Xray and NMR of very concentrated agarose gels[J].Macromolecules, 1989, 22:1196-1201.
  • 7Watase M, Nishinari K. Rheological properties of agarosegelatin gels[J]. Rheologica Acta, 1980, 19: 220-225.
  • 8Watase M and Nishinari K. Rheological and thermal properties of carrageenen gels [J]. Makromol Chem, 1987, 188:2213-2221.
  • 9Moritaka H, Nishinari K, Nakahama N, et al. Effects of potassium chloride and sodium chloride on the thermal properties of gellan gum gels[J]. Biosci Biotech Biochem, 1992,56:595-599.
  • 10Maekaji K. The Mechanism ofGelation of Konjacmannan[J].Agric Biol Chem, 1974, 38:315-321.

共引文献18

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部