期刊文献+

基于Transformer的新闻情感分析算法

News Sentiment Analysis Model Based on Transformer
下载PDF
导出
摘要 目前,新闻文本情感分析大多没有关注文章结构对于判断情感极性的引导作用,且往往仅关注文章内容,导致获取信息较为局限。为此,本文提出了基于情感重点句融合知识图谱的Transformer模型。使用了多特征情感重点句抽取算法,有效地降低了文本维度;引入了知识图谱,对新闻中涉及的内容进行知识增强,丰富了文本信息;结合新闻的结构特点使用Transformer模型进行情感分析。实验结果表明,该模型性能与基线模型相比有一定提升,且融合知识图谱可以进一步有效提升模型性能,是一个值得关注的研究方向。 At present,most of the news sentiment analysis research does not pay enough attention to the guiding role of the news struc⁃ture and usually focus on content of the article,which leads to limited source of information collected for analysis.In order to improve accuracy of sentiment analysis,this paper proposes a Transformer model based on key sentiment sentence with the integration of knowledge graph.First,a key sentiment sentence extraction algorithm is used to reduce dimension of the texts,and then knowledge graph is introduced to enrich message of the texts.Finally,conduct sentiment analysis of the news texts according to the structure of the news using Transformer model.Experimental results demonstrate that the proposed model performs better compared with baseline models.In addition,knowledge graph can further improve performance of the model.
作者 王天宇 张丽珩 臧天昊 文一涵 Wang Tianyu;Zhang Liheng;Zang Tianhao;Wen Yihan(College of Computer Science,Beijing University of Technology,Beijing 100124;College of Software Engineering,Beijing University of Technology,Beijing 100124)
出处 《现代计算机》 2021年第24期67-72,共6页 Modern Computer
基金 北京工业大学“星火基金”资助课题(XH-2020-02-05)。
关键词 新闻文本 情感分析 TRANSFORMER 知识图谱 注意力机制 news text sentiment analysis transformer knowledge graph attention mechanism
  • 相关文献

参考文献6

二级参考文献48

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2[英]诺曼·费尔克拉夫.话语与与变迁[M].华夏出版社,2003.79.
  • 3PANG B,LEE L.Opinion mining and sentiment analysis[J].Foundations and Trends in InformationRetrieval,2008,2 (1-2):130-135.
  • 4HU M,LIU B.Mining and summarizing customer reviews[C].NY,USA:Proceedings of Knowledge Discovery and Data Mining,2004:168-177.
  • 5PANG B,LEE L,VAITHYANATHAN S.Thumbs up:sentiment classification using machine learning techniques[C].PA,USA:Proceedings of the ACL-02 Conference on Empirical methods in natural language processing-Volume 10,Stroudsburg,Association for Computational Linguistics,2002:79-86.
  • 6MELVILLE P,GRYC W,LAWRENCE.Sentiment analysis of blogs by combining lexical knowledge with text classification[C].New York:Proceedings of SIGKDD,ACM,2009.
  • 7LI S,HUANG C,ZHOU G.Employing personal impersonal views in supervised and semisupervised sentiment classification[C].New York:Proceedings of ACL,ACM,2010:414-423.
  • 8KUMAR A,SEBASTIAN T M.Sentiment analysis on twitter[J].International Journal of Computer Science Issues,2012,9(4):628-633.
  • 9ZHANG W,YU C,MENG W.Opinion retrieval from blogs[C].Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management,ACM,2007:831-840.
  • 10ZHANG W,JIA L,YU C,et al.Improve the effectiveness of the opinion retrieval and opinion polarity classification[C].MA USA:Proceedings of the 17th ACM Conference on Information and Knowledge Management,ACM,2008:1415-1416.

共引文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部