摘要
为了解决氧化锆增韧氧化铝(ZTA)陶瓷颗粒增强铁基复合材料制备过程中,ZTA陶瓷颗粒与铁基体润湿性差的问题,在ZTA陶瓷颗粒表面镀覆Ni-TiB_(2)镀层。通过化学镀镍及电镀Ni-TiB_(2)两步法,先在ZTA陶瓷颗粒表面化学镀镍得到具有导电性的ZTA@Ni颗粒,再在ZTA@Ni颗粒表面电镀均匀的Ni-TiB_(2)复合镀层。采用XRD对ZTA、ZTA@Ni和ZTA@Ni-TiB_(2)颗粒进行物相分析;使用数码相机和SEM分别对ZTA、ZTA@Ni和ZTA@Ni-TiB_(2)颗粒进行宏观及微观形貌观察;并利用EDS分析镀层中各个元素的质量百分比。分别研究电镀液中TiB_(2)粉末浓度、氯化胆碱-乙二醇(ChCl-EG)浓度及沉积电压3种因素对Ni-TiB_(2)复合镀层的成分及表面形貌的影响。结果表明,在1.8 V的沉积电压下,TiB_(2)粉末掺杂浓度为6 g/L,ChCl-EG的浓度为9 g/L时,Ni-TiB_(2)复合镀层平整均匀,无孔洞产生,镀层中的TiB_(2)质量百分数可以达到58.22%~64.79%。
In order to solve the problem of poor wettability between the zirconia toughened alumina(ZTA)particles and the iron matrix during the preparation of ZTA particles reinforced iron matrix composite,the surface of ZTA particles is plated with Ni-TiB_(2)coating.The Ni-TiB_(2)coating is prepared by the two-step method of electroless nickel plating and Ni-TiB_(2)electroplating.Firstly,the nickel coating is electroless plated on the surface of ZTA particles to obtain conductive ZTA@Ni particles,and then the uniform Ni-TiB_(2)composite coating is electroplated on the surface of ZTA@Ni particles.The phases of ZTA,ZTA@Ni and ZTA@Ni-TiB_(2)particles were analyzed by X-ray diffraction(XRD).In addition,the macro and micro morphologies of ZTA,ZTA@Ni and ZTA@Ni-TiB_(2)particles are observed by digital camera and scanning electron microscope(SEM).Moreover,the element contents in Ni-TiB_(2)coating are investigated by energy disperse spectroscopy(EDS).The effects of Ti B_(2)powder concentration,choline chloride glycol(Ch Cl-EG)concentration and deposition voltage in the electroplating bath on the composition and surface morphology of Ni-TiB_(2)composite coating are studied,respectively.When the Ti B_(2)pouder doping concentration is 6 g/L,the Ch Cl-EG concentration is 9 g/L and the deposition voltage is 1.8 V,the flat and uniform coating without pores is obtained,and the weight percentage of TiB_(2)in the coating can reach 58.22%-64.79%.
作者
贺涵
蒋业华
汝娟坚
华一新
He Han;Jiang Yehua;Ru Juanjian;Hua Yixin(School of Material Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China;School of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China)
出处
《中国表面工程》
EI
CAS
CSCD
北大核心
2021年第3期159-167,共9页
China Surface Engineering
基金
国家自然科学基金资助项目(51571103)。