摘要
针对噪声干扰下的Hammerstein非线性动态系统,提出一种基于神经网络的Hammerstein OE(Hammer-stein Output Error)非线性系统参数估计方法。在该系统中,利用BP神经网络和自回归模型分别建立静态非线性模块和动态线性模块,并提出两阶段参数估计方法:第一阶段,利用辅助模型递推最小二乘方法估计动态线性模块的参数,解决了系统中间变量不可测问题;第二阶段,为了改善参数学习收敛率,利用含有动量项的随机梯度下降方法估计BP神经网络的权值。仿真结果表明,提出的方法能够有效估计Hammerstein OE非线性系统参数。
For Hammerstein nonlinear dynamic systems corrupted by noise,a parameter estimation method neural network based Hammerstein OE nonlinear system is proposed.In this system,BP neural network and autoregressive model is used to build static nonlinear block and dynamic linear block respectively,and two stage parameter estimation scheme are proposed.In the first stage,the parameters of dynamic linear block are estimated by using auxiliary model recursive least square method,which solves the problem that the intermediate variables of the system cannot be measured.In the second stage,in order to improve the learning convergence rate,the random gradient descent method with momentum term is used to estimate the weights of BP neural network.Simulation results show that the proposed parameter estimation method can effectively estimate the parameters of Hammerstein OE nonlinear system.
作者
李峰
李诚豪
LI Feng;LI Chenghao(School of Electrical and Information Engineering,Jiangsu University of Technology,Changzhou 213001,China;Chongqing University-University of Cincinnati Joint Co-op Institute,Chongqing 400044,China)
出处
《江苏理工学院学报》
2021年第4期25-31,共7页
Journal of Jiangsu University of Technology
基金
国家自然科学基金项目“基于深度学习的复杂工业过程块结构模型研究”(62003151)
江苏省基础研究计划(自然科学基金)“基于数据驱动的模块化非线性系统辨识方法研究”(BK20191035)。