摘要
为解决服务推荐过程中,用户兴趣的不确定性问题和多样性问题,提出一种基于用户多兴趣的服务流程推荐方法。该方法分为两部分:①初始兴趣引导:在初始创建服务流程时,面对用户兴趣的不确定性,利用N元模型学习已知服务流程的上下文,通过上下文顺序缩小推荐空间,为用户提供更加精准的服务链接组件;②用户兴趣抽取:在创建服务流程结束后,面对用户兴趣的多样化,概率潜在语义分析训练出用户的兴趣-服务流程分布,为用户推荐出符合当下兴趣的其他服务流程。通过仿真实验表明,所提方法能够快速、准确地为用户推荐相关服务组件和业务流程链。
To solve the uncertainty and diversity of user interests during service recommendation,a service process recommendation method based on user multiple interests was proposed.The method was divided into two parts:①initial interest guidance.The N-gram model was used to learn the context of known service processes when initially creating a service process,and the context sequences were used to reduce the recommendation space for providing users with more accurate service components;②user interest extraction.Facing the diversification of user interests,probabilistic latent semantic analysis trained the user's interest-service process distribution and recommended other service processes in line with the user’s current interests.Simulation experiments showed that the proposed method could quickly and accurately recommend relevant service components and service processes to users.
作者
陈明
高铁梁
张志锋
季肖辉
唐启光
CHEN Ming;GAO Tieliang;ZHANG Zhifeng;JI Xiaohui;TANG Qiguang(College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001,China;School of Business, Xinxiang University, Xinxiang 453000, China;Oil & Gas Engineering Service Center,SINOPEC Zhongyuan Oilfield, Puyang 457001, China)
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2021年第9期2701-2707,共7页
Computer Integrated Manufacturing Systems
基金
国家自然科学基金资助项目(61975187,61902021)
河南省科技攻关资助项目(212102210104,162102210214)。
关键词
用户创建服务
N元模型
服务组件
概率潜在语义分析
服务流程
user generated service
N-gram model
service component
probabilistic latent semantic analysis
service process