期刊文献+

基于自注意力的BiGRU和SVM的观点句识别 被引量:3

Opinion sentence recognition based on self-attention BiGRU and SVM
下载PDF
导出
摘要 现有的观点句识别方法大多依赖于人工的特征选择,并且提取的数据稀疏。针对这些问题,提出一种基于自注意力双向门控循环单元(BiGRU)和支持向量机(SVM)相结合的方法。首先,将词向量输入到BiGRU中,引入自注意力机制,为BiGRU的隐藏层状态提供求和权重,使之与隐藏层状态相加权,将句子语义的不同方面分别提取到多个向量表示中,形成二维的句嵌入矩阵;然后,将矩阵转化成向量形式,输入到SVM分类器中输出分类结果。与SVM、LSTM和自注意力BiLSTM模型相比,该方法能够提取句子的关键特征,提高观点句识别的精确率。 Most of the existing opinion sentence recognition methods rely on manual feature selection,and the extracted data is sparse.Therefore,a method based on self-attention is proposed,which combines bidirectional gated recurrent unit(BiGRU)and support vector machine(SVM).Firstly,the word vector is input into BiGRU.The self-attention mechanism is introduced to provide for the hidden layer state of BiGRU and summation weight,which is weighted with the hidden layer state.Different aspects of the sentence are extracted into multiple vector representations to form a two-dimensional sentence embedding matrix.Then,the matrix is converted into vectors,and being input into the SVM classifier to output the classification result.Compared with SVM,LSTM and self-attention BiLSTM models,this method can extract key features representing sentences and improve the accuracy of opinion sentence recognition.
作者 佘朝阳 严馨 谢庆 徐广义 周枫 SHE Zhao-yang;YAN Xin;XIE Qing;XU Guang-yi;ZHOU Feng(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504,China;Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650504,China;Yunnan Nantian Electronic Information Industry Co.,Ltd.,Kunming 650041,China)
出处 《信息技术》 2021年第9期7-12,共6页 Information Technology
基金 国家自然科学基金(61462055,61562049)。
关键词 自注意力 双向门控循环单元 支持向量机 观点句识别 self-attention bidirectional gated recurrent unit support vector machine opinion sentence recognition
  • 相关文献

参考文献7

二级参考文献47

  • 1曹立勇,郑诚.基于知网的语义相似度的改进算法[J].电子技术(上海),2010(5):1-3. 被引量:2
  • 2张玉芳,彭时名,吕佳.基于文本分类TFIDF方法的改进与应用[J].计算机工程,2006,32(19):76-78. 被引量:121
  • 3Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 4Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 5Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 6Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 7Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 8K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 9Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.
  • 10HowNet[R]. HowNet's Home Page. http://www. keenage.com.

共引文献498

同被引文献35

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部