期刊文献+

基于模糊评价和数据挖掘的教学评估系统设计 被引量:7

Design of teaching evaluation system based on fuzzy evaluation and data mining
下载PDF
导出
摘要 为了提升教学评估效率、规范教学评估标准,文中基于B/S架构设计了一套智能教学评估信息系统。该系统在设计时借助软件工程的相关理论进行详尽的需求分析,设计包含用户身份验证、评教基本信息、评教方案设计等模块,覆盖了评估工作的全流程。该系统引入模糊评价算法建立了两级教学评价指标体系,并基于模糊数学理论计算得到各个指标的权重。在数据处理上,采用数据挖掘领域的K-means算法,通过无监督的学习提前对所有采集的评教数据进行分类,显著提升了数据处理的效率。测试结果表明,该系统的评价结果与传统人工评价方法的数据吻合度为89.4%。 In order to improve the teaching evaluation efficiency and standardize the teaching evaluation standards,this paper designs an intelligent teaching evaluation information system based on B/S architecture.The system is designed using software engineering theory for detailed needs analysis.The design includes user authentication,basic information of teaching evaluation,teaching evaluation scheme design and other modules,covering the whole process of evaluation work.The system introduces fuzzy evaluation algorithm to establish a two-level teaching evaluation index system,and calculates the weight of each index based on fuzzy mathematics theory.In data processing,K-means algorithm in the field of data mining is used to classify all the collected teaching evaluation data in advance through unsupervised learning,which significantly improves the efficiency of data processing.The test results show that the evaluation result of the system is 89.4% consistent with the traditional method.
作者 苟睿超 叶晓龙 罗小楠 王彬 胡悦 GOU Rui-chao;YE Xiao-long;LUO Xiao-nan;WANG Bin;HU Yue(Teaching Evaluation Center,PLA Air Force Medical University,Xi’an 710032,China)
出处 《信息技术》 2021年第9期19-23,共5页 Information Technology
基金 陕西省重点研发计划项目(2018YBXM-SF-17-5)。
关键词 模糊评价 数据挖掘 教学评估 K-MEANS fuzzy evaluation data mining teaching evaluation K-means
  • 相关文献

参考文献14

二级参考文献126

共引文献143

同被引文献83

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部