期刊文献+

Spark平台下基于聚类挖掘的影视资源智能推荐 被引量:3

Intelligent recommendation of video resources based on cluster mining under Spark platform
下载PDF
导出
摘要 为了从海量的网络影视资源中快速准确地向用户推荐其感兴趣的视频,提出了一种Spark平台下基于邻近传播(AP)聚类的智能推荐方案。数据存储采用了分布式文件系统,并在弹性分布式数据集中采用AP聚类进行资源实时推荐,加快聚类速度。此外,将明可夫斯基(Minkowski)相似性度量引入到AP聚类中,替换原有的欧氏距离度量来构建相似度,以提高其聚类精度。在常用电影数据集MovieLens上进行实验验证。结果表明,Spark平台有效提升了聚类计算的效率。同时,相比于AP聚类和K-均值聚类算法,改进AP聚类的推荐准确率更高。 In order to quickly and accurately recommend videos appealing to users from massive network video resources,an intelligent recommendation scheme based on Affinity Propagation(AP)clustering in Spark platform is proposed.The distributed file system is used for data storage,and AP clustering is used in elastic distributed data set to realize real-time resource recommendation,which accelerates the clustering speed.In addition,Minkowski similarity measurement is introduced into AP clustering,replacing the original Euclidean distance measurement to construct similarity matrix to improve its clustering accuracy.Experiment verification is carried out on the commonly used movie data set MovieLens.The results show that spark platform improves the efficiency of clustering computing.At the same time,compared with AP clustering and K-means clustering algorithm,the recommended accuracy of improved AP clustering is higher.
作者 张敏 程鹏翔 ZHANG Min;CHENG Peng-xiang(Film and Television Department,Shaanxi Art Vocational College,Xi’an 710054,China)
出处 《信息技术》 2021年第9期30-33,38,共5页 Information Technology
基金 陕西省职业技术教育学会2019年度职业教育研究课题(SZJYB19-227)。
关键词 智能推荐 邻近传播聚类 Spark架构 分布式数据集 相似性度量 intelligent recommendation neighbor propagation clustering Spark architecture distributed data set similarity measurement
  • 相关文献

参考文献7

二级参考文献59

  • 1袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:152
  • 2Frey B J and Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976.
  • 3Givoni I E and Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600.
  • 4Jia Sen, Qian Yun-tao, and Ji Zhen, Band hyperspectral imagery using affinity. Proceedings of the 2008 Digital Image Techniques and Applications, Canberra, ACT selection for Propagation. Computing: 1-3.12.2008:137-141.
  • 5Gang Li, Lei brain MR International (ISCAS 2009) Guo, and Liu Tian-ming, et at. Grouping of images via affinity propagation. IEEE Symposium on Circuits and Systems, 2009 Taipei, Taiwan, 5.24. 2009: 2425-2428.
  • 6Dueck D, Frey B J, and Jojic N, et al. Constructing treatment portfolios using affinity propagation[C]. Proceedings of 12th Annual International Conference, RECOMB 2008. Singapore. 3.30-4.2, 2008: 360-371.
  • 7Leone M, Sumedha, and Weigt M. Clustering by soft-constraint affinity propagation: applications to gene- expression data. Bioinformatics, 2007, 23(20): 2708-2715.
  • 8Alexander Hinneburg and Daniel A Keim. A general approach to clustering in large databases with noise. Knowledge and Information Systems, 2003, 5(4): 387-415.
  • 9Little M A, McSharry P E, Hunter E J, and Lorraine O. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015-1022.
  • 10王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:94

共引文献69

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部