摘要
为研究波浪低频往复冲击作用下墩柱结构物浪溅区涂层的力学剥蚀因素,分析波浪周期、波高和气泡直径对涂层剥蚀的影响,基于ABAQUS/Standard分析模块,建立了考虑波浪周期、波高和气泡直径的三维数值模型,模拟了波浪作用过程中结构物/涂层界面的气泡损伤演化过程。结果表明:涂层界面气泡应变和影响范围与波高的关系为线性正相关,且基本不受波浪周期的影响,但波浪周期越小,其波浪力作用的频率越快,并在周期时达到最大值;应变和影响范围随气泡直径的增大而增大,而气泡直径越小,其应变分布(椭圆的形状)越规则,波高越大、周期越短、气泡直径越大,气泡越容易破裂,墩柱结构物的涂层越容易被剥蚀。
The effects of wave period,wave height and bubble diameter on the coating erosion were analyzed to study the mechanical erosion factors of the coating on the splash area of pier structure under the impact of low frequency reciprocating wave.Based on the ABAQUS/Standard analysis module,a three-dimensional numerical model considering the wave period,wave height and bubble diameter is established to simulate the evolution process of bubble damage at the interface between structure and coating during the wave action.The results show that the relationship between the bubble strain and the influence range at the coating interface and the wave height is linear and positive,and basically independent of the wave period.However,the smaller the period,the faster the wave force acting on the coating interface and the maximum value is reached at half of the period.The strain and influence range increase with the increase of bubble diameter,while the smaller the bubble diameter,the more regular the strain distribution(elliptical shape).The higher the wave height,the shorter the period and the bigger the bubble diameter,the easier the bubble will break and the easier the coating of the pier structure will be stripped.
作者
常留红
徐斌
孙文硕
覃甁山
汤薇
CHANG Liuhong;XU Bin;SUN Wenshuo;QIN Pingshan;TANG Wei(School of Hydraulic Engineering,Changsha University of Science&Technology,Changsha 410114,China;Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province,Changsha 410114,China;CCCC Second Harbor Consultants Co.,Ltd,Wuhan 430071,China)
出处
《河海大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第5期425-432,440,共9页
Journal of Hohai University(Natural Sciences)
基金
国家自然科学基金(51809022)。
关键词
墩柱
浪溅区
涂层界面
气泡
损伤演化
力学剥蚀
pier
splash zone
coating interface
air bubbles
damage evolution
mechanical erosion